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ABSTRACT
This article conceptualizes systems thinking from the perspective of mental models. It portrays systems thinking as a combi-
nation of perception, prior knowledge and reasoning processes for guiding decision- making in complex, dynamic situations. 
Systems thinking is mostly considered as a skill, and assessment instruments are based on the observable products of thinking. 
However, there is a lack of research on the cognitive processes involved in generating mental representations of complex dynamic 
systems, deriving possible behaviours and decisions. Thus, we propose a conceptual framework that combines mental models 
of dynamic systems and the cognitive theory of reasoning with mental models of possibilities. This theory identifies an intuitive 
and a deliberative reasoning process describing how the deliberative process influences the mental model of the perceived situa-
tion. While remaining compatible with the existing literature on systems thinking, this framework addresses this gap. Through 
examples, the study illustrates how the distinct levels of systems thinking knowledge of three stylized agents lead to different 
models, even when the reasoning process is identical. Boundary mismatch errors in the represented structure lead to errors in 
judging- system behaviours as necessary, possible or impossible, leading to different decisions. Based on this finding, several new 
research questions are proposed concerning the dynamics of the cognitive processes and mental models over the iterations of dy-
namic decision- making in laboratory experiments. We close with a call for more research to move beyond the current limitations.

1   |   Introduction

This article contributes to research on systems thinking (ST) 
from the perspective of mental models and focusing on the ways 
people attempt to regulate their decisions when interacting with 
a complex dynamic situation. This complexity stems from many 
interacting elements, and they are dynamic because their be-
haviour and partially opaque structure can change. People ex-
perience complex problems (Dorner and Funke 2017) when they 
must interact with the system underlying such a situation and 
therefore need to discover or recognize (a) the system's structure, 

(b) the range of possible behaviours and (c) how to best proceed 
given their needs or wants. At the surface, the situation is a set 
of salient behaviours of variables (e.g., global temperatures and 
CO2 emissions). Then, the gap between how global temperature 
evolves and how they want it to be is a complex problem in the 
sense of the three above- mentioned elements. Once a course 
of action has been decided and implemented, the ensuing ac-
tions can have the intended effects on the system or trigger un-
planned consequences. This then leads to another iteration of 
complex problem solving. In the remainder of this article, sit-
uation is shorthand for complex dynamic situations. Thinking 
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systemically promises to be helpful, and it is important for the 
population at large because everybody is currently interacting 
with such situations. Unsurprisingly, it has been the theme of 
over 260 articles published in Systems Research and Behavioral 
Science between 2002 and 2023 (80 of them since 2020, accord-
ing to Web of Science).

Thinking is a set of mental processes that work with and transform 
knowledge and mental representations ‘to characterize actual or 
possible states of the world’ (Holyoak and Morrison 2005, 2) and 
to plan and execute behaviours (Minda 2015, 4). Interestingly, 
most of the over 20 definitions and assessment instruments 
for systems thinking identified by Dugan et  al.  (2022) con-
centrate on the products of such thinking. However, only few 
authors discuss the aspects of cognition, identifying common 
general features. The products are undoubtedly an important 
aspect, and methodologies for thinking systemically, such as 
the soft systems methodology (Checkland and Poulter 2020), 
have guided practitioners for decades. Also, the various in-
struments developed to assess people's systems thinking skill 
level are relevant.

Yet, we contend that an exclusive focus on skill overlooks im-
portant elements of the internal mental or cognitive processes. A 
clearer understanding of the thinking process itself (e.g., learn-
ing more about how reasoning processes and personal knowl-
edge interact and how this allows attaining certain skill levels) 
would help advance the field.

To make a first step in this direction and start a scholarly debate, 
we lay out a conceptual framework for reasoning that is com-
patible with the skill- set view of systems thinking and combines 
two well- established domains of mental model research. First, 
in various areas where people and managers decide on courses 
of action, researchers have conceptualized the inner representa-
tions decision- makers hold of the situations they face as mental 
models (Johnson- Laird 2004; Schaffernicht and Groesser 2024). 
The concept of mental models of dynamic systems has been oper-
ationalized specifically for decision- making in complex dynamic 
situations (Groesser and Schaffernicht 2012; Schaffernicht 2019; 
Schaffernicht and Groesser  2024). This kind of mental model 
denotes how someone considers a situation to be structured, and 
we use the term structure model.

The second domain is the cognitive theory of reasoning with 
mental models of possibilities (Johnson- Laird and Ragni 2019; 
Khemlani, Byrne, and Johnson- Laird  2018). It proposes that 
people think about situations and their decisions in terms of 
mental models of possibilities. The theory also describes two dif-
ferent reasoning processes: one for quick processing of the most 

salient possibility, and the other for deploying and processing all 
reasonable possibilities (Stanovich 2012). Our focus is on pos-
sible behaviours of variables, hence the term behaviour models 
in this study. The second reasoning process can also alter the 
structure model based on personal knowledge (Khemlani and 
Johnson- Laird 2022), which makes this theory particularly in-
teresting for iterated decisions where each iteration can provide 
new knowledge.

We combine mental models of dynamic systems that describe 
causal structure with mental models of possibilities represent-
ing this structure's possible behaviours. Through an exam-
ple based on previous studies, we show how three individuals 
with distinct knowledge bases—without prior knowledge, with 
context- specific knowledge, and with knowledge of systems 
principles—construct their respective structure model combin-
ing situational information and knowledge (where available) 
and then derive behaviour models, leading to decisions of dis-
tinct degrees of adequacy. This also reveals two types of mental 
model errors, the first of which are boundary mismatches: The 
structure model lacks elements needed to account for the system 
behaviour. The second type of errors happens at the behaviour 
models level: People can (a) obviate relevant possibilities but also 
(b) mistakenly process presumable possibilities that are impos-
sible in the particular situation. The latter is a consequence of 
structure model boundary mismatches. This underlines the im-
portance of prior knowledge to avoid structure model errors. We 
observe that adequate context- specific knowledge and knowl-
edge of more generic systems principles both lead to equivalent 
behaviour models and decisions.

The article is organized as follows. Section 2 reviews the extant 
literature, examining the conceptualizations of systems think-
ing and relevant links to other themes in cognition and arguing 
that treating systems thinking as a skill- set leaves the cognition 
aspects out of focus. Next, Section 3 introduces mental models at 
large, with both types of mental models used here and later com-
bined. Section  4 discusses the proposed framework, together 
with some of its implications and research questions arising. 
The conclusion section summarizes our results, outlines some 
limitations and calls for empirical studies.

2   |   Systems Thinking

2.1   |   Conceptual Definitions

Systems thinking is ‘a broad church’ (Burnell  2016, 472), de-
scribed by some very aggregated and general conceptual defi-
nitions. For instance, Cabrera, Cabrera, and Powers  (2015) 
proposed four universal components. This kind of thinking oc-
curs from a particular perspective, which allows people to distin-
guish certain features in the situation taken as a whole, and the 
relationships perceived between the distinguished fragments 
bring everything back together to form the perceived system. 
Others define it as a cognitive paradigm for perceiving oneself 
and the world as interdependent entities that continuously gen-
erate emergent patterns (Randle and Stroink 2018, 646).

These conceptual definitions delimit the general meaning with-
out the specifics needed to tell whether or to which degree a 

Summary

• Mental models combine prior knowledge and percep-
tions of complex problems.

• Deliberate reasoning assesses more possible system 
behaviours than intuitive reasoning.

• Reasoning with mental models links structural 
knowledge to decision policies.
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particular act of thinking is systemic. However, at a more dis-
aggregated level of description, definitions are diverse. Buckle 
Henning and Chen  (2012) synthesized 14 definitions into five 
knowledge domains: People should know particular laws, 
basic system types, system dynamics and archetypal patterns 
and multiple methodologies developed by systems scholars; 
they should also know how to draw visual models of a system 
(475). This study also identified the following six cognitive char-
acteristics: mental orientation towards causality, logic, data 
sources, explicit and implicit structures, subjectivity and self- 
reflection (478).

The question arises how the research object ‘systems think-
ing’ intersects with other cognition constructs. Davis and 
Stroink (2016) used an assessment scale developed for the defi-
nition described by Randle and Stroink (2018) and investigated 
the relationships between several personality measures and de-
cision tasks developed in psychological research (Randle and 
Stroink 2018; Thibodeau, Frantz, and Stroink 2016). They found 
that intelligence and cognitive complexity overlap with systems 
thinking, but they do not fully explain the diversity of systems 
thinking performances (Randle and Stroink  2018). From the 
standpoint of psychology and cognition, systems thinking mer-
its to be investigated in its own right.

Turning to other cognition aspects, prior (content- related, 
system- specific) knowledge and general conceptions influ-
ence people's reasoning about a particular system (Mambrey, 
Schreiber, and Schmiemann  2020). Here, knowledge refers to 
conceptually knowing what the entities in the system are, how 
they are interrelated and how they usually behave. Novices 
without such knowledge focus on readily available, salient in-
formation and static surface features, whereas domain experts 
integrate the aspects of the system's inner structure and be-
haviour. However, although flawed mental representations are 
attributable to a lack of ‘systems- specific content knowledge’ 
(Sweeney and Sterman 2007, 305), content- related knowledge is 
not systems knowledge: The former may contain systemic fea-
tures but is specific, as opposed to the latter, which is general 
an abstract.

In contrast to system- specific knowledge, general conceptions 
are intuitive notions and beliefs people have about things. 
Humans approach decision- making situations by employing 
‘reasonable and viable conceptions based on their experiences in 
different contexts or in their daily life activities’ (Fujii 2014, 453). 
Treating the new through what is already known allows to steer 
decisions and behaviours in a fluid and economical manner, but 
it also leads to systematic errors when being at odds with scien-
tific principles. This has led to terms such as ‘naïve beliefs’ or 
‘misconceptions’, albeit without a pejorative intent (Resbiantoro, 
Setiani, and Dwikoranto 2022). In addition, individuals without 
special training, who employ such naïve beliefs, are referred to 
as laypeople (Buckle Henning and Chen  2012) without value 
judgements.

Some conceptions can make people focus on linear causal 
chains and overlook interdependencies, a phenomenon stud-
ied under the term ‘misperception of feedback’ (Gary and 
Wood  2016; Moxnes  2000, 2004; Moxnes and Saysel  2009; 
Sterman  1989). Another conception is that in a cause–effect 

relationship, the effect is analogous to the cause; however, this 
fails when one factor is a flow rate and the other a stock (state 
variable) accumulating the flow (Sterman  2010; Sweeney and 
Sterman 2000; Sweeny and Sterman 2005). Both problems have 
been reported for individuals without domain- specific knowl-
edge or systems knowledge. General education does not ap-
pear to overcome these shortcomings (Cronin, Gonzalez, and 
Sterman 2009), and mathematical training has a limited effect 
(Qi and Gonzalez 2015; Sterman 2010). There is evidence sug-
gesting that thinking styles and metacognition may be partially 
responsible (Aşιk and Doğança Küçük 2021; Baghaei Lakeh and 
Ghaffarzadegan 2015; Brauch and Größler 2022), but they do not 
fully explain the phenomenon. Contrary to individuals without 
specific preparation, trained subjects tend not to fall victim to 
these flaws related to systems thinking (Plate  2010). In such 
cases, flawed ‘understanding of basic systems concepts’ is a hin-
drance (Sweeney and Sterman 2000, 251). Buckle Henning and 
Chen (2012) also observed the absence of a unified set of princi-
ples and conceptions.

2.2   |   Systems Thinking as a Skill

System- specific conceptual knowledge, general conceptions and 
basic systems concepts are types of knowledge. Hosted in long- 
term or in working memory, they are apparently used in the rea-
soning processes, but are not the processes themselves. Yet, they 
influence people's systemsthinking performance. Performance 
has to be connected with a skill. Indeed, most publications have 
discussed systems thinking as a skill- set. Whereas the above 
manifestations of knowledge are mental in the sense of private 
to the individual, skill is a relational phenomenon, involving 
an individual's actions in a task, classified by some schema 
containing certain dimensions. A skill combines knowledge 
and performance in a specific class of situations (Sadler 2013; 
Shavelson 2010): A skill shows in the performed ability to dis-
tinguish what is going on, to decide what is to be done and then 
do it. Skills are not innate but can be learned and developed 
through stages or levels from novice to expert (Dall'Alba and 
Sandberg 2006; Eraut 2000). The performative aspect differenti-
ates skills from knowledge and basic conceptions, leading to the 
following two consequences: (1) A concrete situational context is 
required to learn a skill and to assess the current skill develop-
ment stage of an individual, and (2) skill assessment depends on 
the possibility to observe performance.

Considering the first consequence, systems thinking as a skill 
is usually taught in the context of a specific knowledge area 
containing systems. Most authors justify this by the usefulness 
of systems thinking to better understand the respective knowl-
edge field. Importantly, improved domain knowledge has been 
found to improve systems thinking performance (Mambrey, 
Schreiber, and Schmiemann  2020), suggesting a fruitful in-
teraction between domain knowledge and systems thinking. 
Teaching starts in early childhood (Feriver et al. 2020), where 
applications have concentrated on Earth systems and geogra-
phy education (Assaraf and Orion 2005, 2010; Batzri et al. 2015; 
Lee, Gail Jones, and Chesnutt  2017; Mambrey, Schreiber, 
and Schmiemann  2020; Mehren et  al.  2018; Sweeney and 
Sterman 2007), sustainability (Mahaffy et al. 2019) and STEM 
education (York et al. 2019) as well as Next Generation Science 
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(Eidin et al. 2023). In high school and at the undergraduate level, 
systems thinking is taught in biology (Raved and Yarden 2014; 
Tripto, Assaraf, and Amit 2018), chemistry (Paschalidou, Salta, 
and Koulougliotis  2022; Pazicni and Flynn  2019; York and 
Orgill  2020), engineering (Dugan et  al.  2022) and physiology 
(Wellmanns and Schmiemann 2022).

The fact that systems thinking is being taught does not mean 
that it cannot be learned independently. The question of the ex-
tent to which people without specific training think systemically 
motivated Burnell (2016) to develop an assessment tool based on 
the six aspects proposed by Buckle Henning and Chen (2012). 
Burnell reported that individuals with systems thinking train-
ing have a higher tendency towards causality, logic and self- 
reflection than people without such training. In addition, a 
study of systems knowledge levels and the attitude towards 
systems thinking as a tool among individuals without specific 
training found that respondents ‘tend to either overestimate or 
underestimate their knowledge of systems, social systems, and 
use of systems thinking’ (Dawidowicz 2012, 9).

Several operational definitions come from educational contexts 
and provide a clearer understanding of the concept. They es-
tablish sets of skills that, taken together, constitute the systems 
thinking competence. Moreover, by specifying more detailed 
‘abilities’, these definitions enable us to infer specific items of 
knowledge required or useful for systems thinking. In a sys-
tematic literature review, Dugan et al.  (2022) identified 27 as-
sessment tools developed in a range of thematic fields (mostly 
engineering, chemistry, biology, environment and STEM) for 
diverse educational levels from pre–high school to professional. 
The definitions of systems thinking underpinning the assess-
ment tools varied widely (see 852–856); some high- level concep-
tual definitions, such as ‘seeing the whole’, and many contain 
the ability to identify a system's elements and the relationships 
between them and to understand its dynamic behaviour, remi-
niscent of the above mentioned universal components. Only 18 
assessments used a sufficiently operational definition to be eval-
uated, and 13 of them revealed operational details of systems 
thinking, explicitly accounting for a system's elements, relation-
ships and behaviour.

One definition is operational—the ‘systems thinking hierarchy’ 
(STH), originally developed for Earth systems education (spe-
cifically the water cycle) by Assaraf and Orion (2005). It com-
prises eight skills organized into three levels. Level 1, analysis, 
is the ability to (1) identify the components of a system and pro-
cesses within the system. Synthesis is the second level, and it 
comprises the ability to (2) identify the relationships among the 
system's components, to (3) organize the systems' components 
and processes within a framework of relationships, to (4) make 
generalizations and to (5) identify dynamic relationships within 
the system. The third and the highest level is to (6) understand 
the hidden dimensions of the system (recognizing patterns of 
change and interrelationships not visible on the surface), to (7) 
understand the cyclic nature of systems and to (8) think tempo-
rally (i.e., retrospection and prediction; 523).

Mehren et  al.  (2018) further expanded the STH, proposing an 
empirically corroborated skills model with three stages of sys-
tems thinking skill development. Individuals at the first stage 

identify a system's organization: (1) its boundary and (2) the in-
ternal organization. Someone who understands (3) a system's 
past behaviour, (4) its emergent characteristics, (5) the interac-
tions between components and (6) the system's dynamics, has 
reached the second stage. At the third stage, a person is able to 
(7) predict the system's future behaviour and (8) conceive of reg-
ulatory measures.

These definitions come from specific knowledge areas, but they 
arguably describe more general and area- independent skills. 
Being able to identify a boundary, the elements inside it and the 
relations among them implies either prior area- specific knowl-
edge or the general knowledge that systems have a boundary 
with interrelated elements inside, paired with the practical 
knowledge to use the conceptual knowledge. Similarly, being 
able to explain observed behaviours referring to the struc-
tural components is the consequence of either retrieving the 
respective explanations from long- term memory or knowing 
the principles of how behaviour is driven by structure and the 
practical knowledge of applying them. The same holds true for 
the ability to think up regulatory interventions and their likely 
consequences, even though deriving possible behaviours from 
structure may be more difficult than explaining observed be-
haviours by structure.

Next, we consider the second consequence of the performative 
aspect of skill, which is that performance implies observability. 
For instance, the cockpit behaviour of pilots reveals their skill 
level and is directly observable (for a classical application, see 
Dreyfus and Dreyfus 1980). Contrary to this example, how an 
individual thinks is usually not observed directly but must be 
inferred from the outcomes of the thinking process (answers to 
closed or open questions and/or decisions in simulation experi-
ments). Yet, thinking as the mental process is performed by the 
mind before becoming externally observable.

The above definitions establish the desired products of systems 
thinking. These products articulate the mental content of the 
thinking process when it concludes and is articulated. In the 
earlier stages of the mental processes, basic conceptions and 
prior knowledge have been found to interact with the situational 
perception, and the mental or cognitive process then interacts 
with this content until the individual articulates something 
observable (Mambrey, Schreiber, and Schmiemann 2020). The 
interplay between cognitive structures and processes comes 
before what skill assessments mostly capture. Although some 
systems thinking authors mention the difference between the 
process of reasoning on one hand and the structure of the men-
tal representations referred to as knowledge (Buckle Henning 
and Chen  2012) or as mental models (Cabrera, Cabrera, and 
Powers 2015) on the other, they do not address details.

2.3   |   The Need to Include Reasoning Processes

Differences in the observed levels of systems thinking skill may 
stem from the reasoning process as much as from prior knowl-
edge (content- related knowledge or conceptions). Reasoning has 
interested philosophers and scientists who have proposed cogni-
tive theories based on mental logic (O'Brien 2011; O'Brien 2014), 
probabilistic reasoning (Holyoak and Morrison 2005; Oaksford 
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and Chater 2009; Sloman and Lagnado 2015) and mental models 
(Johnson- Laird 2010; Johnson- Laird and Ragni 2019; Khemlani, 
Byrne, and Johnson- Laird 2018).

Here, a theory of reasoning must describe how people perform 
the mental tasks implied by skillful systems thinking. Looking 
at a partially opaque situation, people only have a mixture of 
perception prior to domain- related knowledge and conceptions 
(Johnson- Laird 2010), and they must first construct their mental 
equivalent of the situation through induction or abduction—a 
process yielding putative explanations (Johnson- Laird, Girotto, 
and Legrenzi 2004).

The first dimension in the definition developed by Mehren et al. 
(2018) contains an inductive/abductive task, which is making 
up one's mind about the structure of the situation. A system's 
conceptual boundary thus emerges according to the individu-
al's goal and perspective. The result may but does not have to be 
a feedback- rich causal structure with interdependent elements 
that drive the system's relevant behaviour traits from the in-
side (endogenously), making it resilient regarding external in-
fluences (Buckle Henning and Chen 2012, 474). Scholars from 
diverse areas have discussed this aspect (Amissah, Gannon, 
and Monat  2020; Arnold and Wade  2015, 2017; Assaraf and 
Orion  2010; Cabrera and Cabrera  2019; Evagorou et  al.  2009; 
Kunc  2008; Plate and Monroe  2014; Raved and Yarden  2014; 
Shastri and Ajjanagadde 1990; Stave and Hopper 2007; Sweeney 
and Sterman 2000, 2007).

The remaining dimensions call for deduction—explaining past 
dynamics in terms of that structure and elaborating a hypothet-
ical course of action. Past behaviours are part of the individu-
al's knowledge, allowing people to compare deduced to known 
behaviours. However, predicting the likely consequences of 
different interventions and devising a promising course of ac-
tion cannot draw on knowledge of the particular situation as a 
benchmark to identify flawed expectations; nonetheless, it can 
benefit from the individual knowing this type of situation or be-
coming knowledgeable about systems principles.

A cognitive theory of reasoning for systems thinking must 
therefore comprise inductive (abductive) as deductive reason-
ing. To the best of our knowledge, the cognitive theory of mental 
models is the only one providing a detailed description of how 
the mind brings prior knowledge to induce the representation 
of a situation (Johnson- Laird and Ragni 2019; Khemlani, Byrne, 
and Johnson- Laird 2018; Khemlani and Johnson- Laird 2019).

3   |   Mental Models

3.1   |   Mental Models in General

A general tenet of mental model researchers is that people make 
internal iconic representations of situations so that they can 
know what the case is and plan their moves. Iconic here means 
that such models are analogous to the situation. Johnson- Laird, 
Girotto, and Legrenzi (2004) mentioned Peirce (1931–1958) as a 
precursor of this idea; albeit the term mental model was first used 
by Craik (1943) and has since been adopted by several disciplines 
(for an overview of mental models as knowledge representation, 

see Jones et al. 2011). In an early overview of the term and its use 
across different fields, Rouse and Morris (1986) discussed men-
tal models as knowledge representation. Although they under-
lined the usefulness of prior knowledge, they also emphasized 
that the diversity of what researchers consider mental models to 
be risks to make the term uninformative.

Many believe that mental models contain people's personal 
knowledge of a situation's structure (concordant with the im-
portance of prior knowledge signalled by Mambrey, Schreiber, 
and Schmiemann  2020). Experts in policymaking postulate 
mental models to contain variables connected by causal links 
and attribute flawed decision policies to overlooked elements 
and interdependencies or insufficient ability to deduce be-
haviour from this causal structure (Forrester 1961, 1971, 1992). 
Dynamic decision- making conceptualizes mental models as 
combinations of cues, actions and outcomes (Gonzalez, Fakhari, 
and Busemeyer  2017) driven and used by cognitive processes. 
Researchers of human–computer interaction are interested in 
how users of interactive systems build mental models that help 
them prevent or mitigate user errors (Gentner and Stevens 1983). 
Management researchers investigate shared and team men-
tal models that contain personal knowledge of a team's tasks 
or its structure to explain differences in team performance 
(DeChurch and Mesmer- Magnus  2010; Langan- Fox, Anglim, 
and Wilson  2004; Mathieu et  al.  2005; Mohammed, Ferzandi, 
and Hamilton 2010; Mohammed, Rico, and Alipour 2021). The 
concept of mental model is as broad as systems thinking, but 
there are two particular types of mental models that prove to be 
useful: (a) to construct a representation of the situation's causal 
structure and (b) derive possible behaviours from that structure.

3.2   |   Mental Models of Dynamic Systems as 
Structure Models

We assume people to make their decisions according to im-
plicit or explicit policies that are at least subjectively consis-
tent with their respective mental model of the dynamic system 
(Forrester 1971, 1987), which is analogous to the decision situa-
tion (Doyle and Ford 1998, 1999). When articulated, such men-
tal models are represented as sets of ‘reinforcing and balancing 
feedback loops emerging from stock, flow, and intermediary 
variables that interact in linear and mostly nonlinear, delayed 
ways’ (Groesser and Schaffernicht 2012, 61). Two questions may 
arise here. The first one is whether the elements of a mental 
model are always variables. The second one is whether all vari-
ables are stocks, flow rates or intermediate. As far as complex 
dynamic decision problems are concerned and decision- makers 
repeatedly attempt to influence the behaviour of the problem's 
elements, the elements of concern are variables (quantities of 
something that change over time). Sometimes, only compound 
statements about such elements are articulated, like with per-
sonal constructs in SODA (Eden 2004), which combine a vari-
able and its desired and feared behaviours. Turning now to the 
second question, the behavioural consequences of causal links 
between a flow rate and a stock (state) variable are unlike those 
of links from a stock to a flow rate. As discussed in the literature 
on the ‘stock and flow failure’, people's ability to infer behaviours 
from causal structure is impaired when overlooking this differ-
ence (Cronin, Gonzalez, and Sterman 2009). Some individuals 
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may not distinguish stocks from flows or may overlook feedback 
loops: People often use only some of the definition's features 
(Lane and Rouwette 2023). However, the data structure derived 
from this definition has enough expressive power to capture all 
relevant aspects in case people distinguish stocks from flows 
and address feedback loops, as well as to compare elicited men-
tal models regarding differences and similarities.1

A mental model of a dynamic system then contains an exter-
nalized representation of how someone mentally represents the 
structure of a situation (ElSawah et al. 2015; ElSawah, McLucas, 
and Mazanov 2013; Schaffernicht 2017, 2019; Schaffernicht and 
Groesser 2014). Therefore, we use the term structure model as 
shorthand for mental model of a dynamic system.

3.3   |   Mental Models of Possibilities as 
Behaviour Models

Structure models are important for reasoning, but the reason-
ing process itself is a distinct entity, using the structure model 
to generate models of a second type that refer to possible be-
haviours of that structure. This cognitive theory represents hu-
mans processing conditional assertions such as ‘if CO2 emissions 
drop, then global temperatures will decrease’ (similar to the sit-
uation used by Sweeny and Sterman  2005), deploying mental 
models of what may be possible to assess the assertion's validity 
as either necessary, possible or impossible. This kind of men-
tal models is called mental models of possibilities. Depending on 
the level of cognitive effort engaged, individuals can deploy ei-
ther the most obvious possibility or an entire set. In the second 
case, they also draw on prior knowledge to complement their 
first impression of the situation. Laboratory experiments using 
spatial, relational, temporal, causal and other reasoning tasks 
have provided evidence that the theory correctly predicts peo-
ple's assessments of such assertions (see table 2 in Khemlani and 
Johnson- Laird 2013, 7). Moreover, some shortcomings of com-
peting theories are avoided by the theory of reasoning with men-
tal models (for a discussion, see Ragni and Johnson- Laird 2020; 
Ragni, Kola, and Johnson- Laird 2018).

The theory takes possibility as any event or fact that may hap-
pen. Because we focus on thinking about a complex dynamic 
situation, we narrow this notion to possible behaviours and 
therefore use the term behaviour model as shorthand for mental 
models of possibilities.

Here, three basic principles of this reasoning theory are require: 
(a) representation, (b) dual process and (c) modulation. The ap-
pendix offers a more detailed presentation (for a complete list of 
principles, see Khemlani, Byrne, and Johnson- Laird 2018).

3.3.1   |   Representation

Mental models are ‘iconic’: Their content is analogical to the sit-
uation to which they refer (Khemlani and Johnson- Laird 2022, 
292). Conditionals such as the assertion regarding CO2 comprise 
an antecedent p (CO2 emissions drop), a consequent q (global 
temperatures decrease) and a causal link as ‘if p then q’. Several 
implications follow from this. First, if p is possible, its contrary 

not- p is possible by default, too: For example, emissions do not 
drop. Therefore, there is a second possible scenario where p does 
not happen (Khemlani and Johnson- Laird  2022, 291). People 
represent each possibility as one behaviour model (Johnson- 
Laird 2012) following a general pattern:

1. p and q, which is the salient possibility that first comes to 
mind when reading the assertion.

2. not- p and not- q: CO2 emissions do not drop and tempera-
tures do not decrease.

3. not- p and q: CO2 emissions do not drop, but temperatures 
decrease. Realizing that there may be other causes of a sur-
face temperature decrease requires more cognitive effort 
(as discussed in the part about the principle modulation in 
the following).

A fourth combination (p and not- q) contradicts the initial state-
ment and is impossible by default.

A conclusion drawn from the assertion ‘if p then q’ is neces-
sarily valid if it holds in every possible scenario. If it holds in 
at least one scenario, it is possibly valid, and invalid otherwise 
(Khemlani and Johnson- Laird 2022, 292).

When thinking systemically about a complex dynamic problem, 
possibilities refer to the possible behaviour of variables repre-
senting the underlying system. ‘Behaviour’ can refer to the state 
of the system at a point in time or to the state changes over time 
(Schaffernicht  2010). Descriptions of change can be static (is 
greater than before) or dynamic (drops, decreases). In the latter 
case, they can mention slope (e.g., constant, increasing, decreas-
ing, quicker than and slower than) and curvature (e.g., accel-
erates and decelerates). Some individuals may also recognize 
combined shapes, according to their prior knowledge (e.g., the 
phases of a business cycle, types of oscillations or modes such 
as logistic growth, overshoot and collapse and others). However, 
people need not know a particular behaviour mode taxonomy. 
For instance, in the assertion about CO2 emissions, ‘drops’ and 
‘decreases’ only mention a slope. However, acceleration and de-
celeration are important behaviour features, and researchers 
wishing to assess the level of systems thinking will define a set 
of reference shapes or modes to classify the elicited material. We 
will use ‘behaviour model’ as shorthand for mental models of 
possibilities. The terms p and q are decomposed into a structure 
and a behaviour component. For instance, ‘CO2 decreases’ be-
comes ‘CO2’ (p- variable) and ‘decreases’ (p- behaviour). This fa-
cilitates connecting the structure model with behaviour models 
using the p- variable parts. Printing p- variables in italics and p- 
behaviours underlined is a typographic convention to make this 
connection salient in this text.

3.3.2   |   Two Distinct Cognitive Processes

The ‘dual process’ theory (Stanovich  2012) postulates that 
humans have two distinct cognitive systems for reasoning. 
A widespread convention is to speak of ‘System 1’ for intu-
itive reasoning, heuristics and judgement (e.g., Randle and 
Stroink  2018). In contrast, ‘System 2’ is deliberate and de-
tailed (Kahneman  2011). The former is fast, approximative 
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and inexpensive in terms of the brain's energy consumption, 
whereas the latter is slow and more accurate but more ef-
fortful and energy intensive. Heuristics as mental shortcuts 
are driven by the intuitive System 1, but the existence of de-
liberative System 2 implies that people do not always follow 
heuristics. When an individual perceives a familiar situation 
(no uncertainty) or is under time pressure, System 1 is more 
convenient. Yet, under uncertainty and when enough time is 
available, System 2 is more accurate (Khemlani, Byrne, and 
Johnson- Laird  2018, 1896). For instance, deliberate reason-
ing can help individuals avoid a pattern- matching heuristic 
(‘the curve of the dependent variable will look similar to the 
curve of the dependent variable’) in tasks where the former 
variable is a flow variable whose values are accumulated in a 
stock variable (Hendijani 2021). System 2 activates gradually, 
ensuring that the benefits of using it outweigh the additional 
effort. Here, we assume all- or- nothing activation for the clar-
ity of discussion.

3.3.3   |   Modulation

Systems 1 and 2 process the implied possibilities differently. 
System 1 only deploys the salient possibility: p and q (CO2 emis-
sions drop and global temperatures decrease). If this is possible, 
the assertion is accepted. This is quick but overlooks other, less 
salient possibilities. The second behaviour model mentioned 
above can be deployed without additional information: If ‘p and 
q’ can be, it can also not be (CO2 emissions do not drop and global 
temperatures do not decrease).

Next, the assertion does not state that q can only happen if p 
happens, so other factors may be related to q, and it can occur 
without p (CO2 emissions do not drop to zero and global tempera-
tures decrease). Personal understanding of the world, not ref-
erenced in the statement, can influence the situation through 
modulation: a meteor striking Earth, super- volcano eruptions 
or a nuclear conflict—these would cause falling temperatures 
without humanity reducing CO2 emissions.

Modulation can also block behaviour models that contra-
dict known facts (Johnson- Laird and Yang  2011). A slightly 
changed version of the above assertion shows this: ‘if CO2 
emissions drop to zero, global temperatures will decrease’. 
Even without rich prior knowledge, common sense suggests 
that zero CO2 emissions are impossible, so the behaviour 
model p and q is blocked.

People's knowledge is updated by new information, and this 
makes modulation relevant for iterated decisions because unex-
pected consequences of previous decisions may trigger people to 
adjust their structure model (Metcalfe 2017).

3.4   |   Thinking About a Complex Dynamic 
Situation With Structure and Behaviour Models

The cognitive theory articulates how people deploy and process 
one or several behaviour models drawing on prior knowledge. 
However, it leaves open how an individual represents the situ-
ation, which is only implied through the conditional assertion. 

Nonetheless, with complex dynamic situations, individuals face 
a rich set of external information (reports, briefings and discus-
sions). Their pool of applicable prior knowledge can contain 
knowledge at distinct hierarchical levels, that is, the conceptions 
and context- related elements described by Mambrey, Schreiber, 
and Schmiemann  (2020). When someone thinks deliberately, 
their structural model contains a combination of externally 
provided elements and prior knowledge, combined into a single 
representation of the situation through modulation. We use CO2 
emissions to exemplify how the theoretical process constructs 
the structure model and then deduce behaviour models of the 
possible effects to derive a decision.

In the example, participants in an experiment were provided 
with introductory information (Sweeny and Sterman 2005, 216). 
The briefing stated that anthropogenic CO2 emissions have 
been rising since the industrial revolution, together with a graph 
displaying emissions behaviour and trend. It also contained a 
graph of the stock of CO2 in the atmosphere, however, without 
mentioning a relationship between both variables. In addition, it 
stated that these emissions are contributing to global warming, 
and a graph showed the behaviour of global temperatures. The 
task was to decide how global temperature may continue if CO2 
emissions drop.

A thought experiment with three fictitious individuals—Alf, 
Betty and Cesar—with distinct prior knowledge exemplifies 
how the cognitive process operates. Alf has no detailed knowl-
edge of either the carbon cycle and its interactions with tempera-
tures or systems thinking per se, and despite activating System 
2 because of his unfamiliarity with the situation, his structure 
model only contains information drawn from the briefing.2 The 
structural model comprises p- variables, causal links and loops:

A1: Changes in CO2 emissions cause changes in the same direc-
tion in global temperatures.

A2: There is a stock of CO2 in the atmosphere.

Betty is acquainted with the context area and can combine it 
with the briefing information. Her System 2 activates when she 
considers the briefing information, where the apparent implica-
tions of a change in emissions contradict her prior knowledge. 
Initially, B1 and B2 are identical to A1 and A2, but there are 
some additional components:

B1: Changes in CO2 emissions cause changes in the same direc-
tion in global temperatures.

B2: There is a stock of CO2 in the atmosphere.

B3: CO2 emissions increase the stock of CO2 in the atmosphere.

B4: Oceans and forests absorb CO2 from the CO2 in the 
atmosphere.

B5: The stock of CO2 in the atmosphere increases net radiative 
forcing from the Sun.

B6: Changes in net radiative forcing lead to changes in global 
temperatures that have the same sign.
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Betty also knows about the effects of global temperature (espe-
cially in the oceans) on CO2 absorption and can add:

B7: Changes in global temperatures cause changes with the op-
posite sign in CO2 absorption.

It follows that B1 must be blocked because if emissions remain 
greater than absorption despite reduction, the increase in tem-
perature will be lower than before, but the temperature will 
not decrease. In the new statement, ‘sign of change’ replaces 
‘direction’:

B1: Changes in CO2 emissions cause changes with the same sign 
in global temperatures.

Even without specialized training in systems modelling, 
she may realize there is a feedback loop between CO2 in 
the atmosphere → net radiative forcing → global tempera-
tures → CO2 → absorption → CO2 in the atmosphere and that 
this loop will reinforce (accelerate) the changes in CO2 in the 
atmosphere.

Cesar has no prior knowledge of the subject, but he knows sys-
tems' principles and the correct definition of polarity. Modulation 
therefore blocks A1 and deploys C1 instead.

C1: Changes in CO2 emissions cause changes with the same sign 
in global temperatures.

His modulation process constructs a structure model similar 
to Betty's. Recognizing the stock of CO2 in the atmosphere as 
a stock variable, he concludes that CO2 emissions are an inflow 
to this stock:

C3: CO2 emissions add to CO2 in the atmosphere.

Although there are no indications of CO2 absorption in the 
briefing, his modelling knowledge suggests that nothing grows 
forever and that a stock cannot decrease is hardly possible: The 
stock must also have outflows:

C4: Some outflow decreases the stock of CO2 in the atmosphere.

Next, global temperatures are a state, so this is a stock variable 
and will only change through a net flow rate, which depends on 
other stocks. Therefore, changes to global temperatures must de-
pend on the stock of CO2 rather than CO2 emissions. This reason-
ing leads to blocking the original statement C1 and replacing it by:

C1: Changes in CO2 in the atmosphere cause global temperature 
changes with the same sign.

Then it is unlikely that CO2 absorption (statement C4) should be 
constant when all other factors are changing, search for infor-
mation about CO2 absorption and realize that:

C5: Changes in global temperatures cause changes with the op-
posite sign in CO2 absorption.

Cesar knows about feedback loops and recognizes a rein-
forcing loop between CO2 in the atmosphere → net radiative 
forcing → global temperatures → CO2 absorption → CO2 in the 
atmosphere.

Figure  1 displays the three structural models as causal loop 
diagrams, where arrows represent an attributed causal link 
with either positive or negative polarity and feedback loops are 

FIGURE 1    |    Three structural models deployed when reflecting on the assertion that ‘if CO2 emissions drop to zero, global temperatures will de-
crease’, depending on prior knowledge of the context domain or systems modeling.
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cyclic sequences of links, in this case of the reinforcing type 
(marked R).

Alf's structural model contains one isolated factor. CO2 emis-
sions are the only influence on global temperatures. The other 
models only differ in making the stock nature of CO2 in the at-
mosphere and of global temperatures explicit.

Consider now how these individuals deploy behaviour models 
and assess them. Assume that each of them activates System 2; 
Alf does so because his lack of prior knowledge prompts deliber-
ate reasoning. For Betty, the assertion is counterintuitive given 
her domain knowledge. Cesar draws on his systems knowledge 
to deliberate.

At the outset, they all deploy the salient and the two other 
possibilities. The behaviour models combine p- variables and 
p- behaviours:

P1: p and q: CO2 emissions drop, and global temperatures 
decrease.

P2: not- p and not- q: CO2 emissions do not drop, and global tem-
peratures do not decrease.

P3: not- p and q: CO2 emissions do not drop, and global tempera-
tures decrease.

By default, p and not- q are not considered because they contra-
dict the assertion itself.

According to Alf's structural model, P1 is consistent with the 
causal link connecting CO2 emissions and temperature; the 
positive causal link means dropping CO2 makes global tempera-
ture decrease. There is no other link to influence temperature, 
meaning that without a drop, there is no decrease; this is what 
P2 states. And without such a second influence, P3 is impossible 
and, therefore, rejected.

Betty analyses P1 through her structural model and concludes 
that this can happen, but it can also not happen because the 
stock of CO2 in the atmosphere changes according to the net 
flow between emissions and absorption. This means that P1 is 
possible, but not unavoidable, and it also follows that P3 is possi-
ble. This also implies that emissions can drop, but temperatures 
do not decrease because the CO2 net flow was still not negative. 
By consequence, modulation deploys P4, which now is possible. 
In contrast, P2 is unavoidable according to the structural model. 
The reinforcing feedback loop would imply that, as CO2 in the 
atmosphere grows, P1 will become less possible, contrary to P3. 
However, without quantitative information, accounting for the 
loop will not change the assessment of the behaviour models.

Cesar ignores the concept of net radiative forcing. He accepts the 
more abstract notion of temperature changes between the two 
stocks in his structure model. His System 1 then deploys and 
classifies all four possibilities in the same way Betty does.

None of them rejects the idea that surface temperature could 
decrease owing to decreasing CO2 emissions. But while Alf 
finds this is necessarily the case, Betty and Cesar only find it is 

possible because emissions are only one component of the CO2 
net flow affecting the atmospheric stock. Their deliberation also 
considered P4, which was not considered by Alf.

Table 1 summarizes these classifications. Only Alf accepts the 
assertion as necessarily valid. Betty and Cesar detect that its 
validity depends on specific conditions, so it can but need not 
happen. Modulation leads to a different assessment of P1, to the 
conclusion that q can but does not necessarily follow from p, that 
P3 is possible and that even P4, which is by default impossible, 
is possible.

Consider the conceptualizations developed by the 
Intergovernmental Panel on Climate Change (IPCC) as a refer-
ence for judging these conclusions and the underlying mental 
models (for an overview, see Sweeny and Sterman  2005, 213). 
When using these models for comparison, we identified errors 
in both kinds of mental models. Each individual's structural 
model must comprise the elements needed to think through the 
behavioural models that lead to an adequate conclusion. The as-
sertion is not incompatible with the IPCC's findings, so Betty 
and Cesar would be right. They may even realize that the loop 
will increasingly decrease the chances that reducing emissions 
makes temperatures decrease.

Alf does not the original P1 and to deploy P4. He also rejects 
P3. We consider this a behavioural model error. A distinct 
variant of this type of error occurs when System 1 processes 
the assertion, since in that case, modulation would not occur, 
and wrong conclusions would follow. But because Alf used 
System 2, not blocking a behavioural model like P1 and not 
deploying P4 are consequences of the structure model lacking 
relevant elements.

Alf's structural model misses several relevant features as an ap-
proximative representation of the carbon cycle. Our planet has 
several CO2 containers, such as oceans, biomass and fossils, and 
there are diverse flows between them. CO2 can be emitted into 
the atmosphere and absorbed out of it, but it is always some-
where. Without these elements in the structure model, there is 
no absorption flow to complement the emissions, and one will 

TABLE 1    |    Assessment of the situation according to different pools 
of prior knowledge.

Behaviour 
models Alf Betty Cesar

P1: p and q 
(salient)

Necessary Possible Possible

P2: not- p and 
not- q

Necessary Necessary Necessary

P3: not- p and q Rejected Possible Possible

P4: p and not- q 
(impossible by 
default)

Not deployed Possible Possible

Conclusion 
about the 
assertion

Necessary Possible Possible
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mistakenly accept the original P1.3 So, Bettys and Cesar's re-
spective structure models correspond to the IPCC findings. The 
differences in the aggregation level of global temperatures they 
contain do not lead to behaviour model errors and present no 
problem for the decision to take. However, Alf's structure model 
shows a boundary error, missing a factor to drain CO2 out of 
the atmosphere. The missing links with the stock of CO2 in the 
atmosphere are also boundary mismatches in principle, but they 
have no consequences here (like Betty not classifying the two 
stock variables as such).

Some boundary mismatches in structure models entail behaviour 
model errors. This is relevant because both types of errors are 
consequential for an individual's ability to assess the validity 
of assertions about a problematic situation. Someone commit-
ting a boundary mismatch shows a low systems thinking level 
for not adequately representing the system's structure (applying 
a rubric, for instance, the one developed by Mehren et al. 2018). 
Furthermore, behaviour model errors, like the ones in our exam-
ple, reveal problems at the systems thinking levels where one ex-
plains observed or projected behaviours by structure. Arguably, 
flawed assessments of possibilities will compromise the quality of 
decision policies crafted for regulatory interventions.

4   |   Discussion

4.1   |   The Conceptual Framework

Our example reveals some noteworthy features. First, the basic 
reasoning processes (Systems 1 and 2) are the same for every-
one. People can differ in their personal conceptions and context- 
relevant knowledge. They can also switch between these 
systems for various reasons. However, the dual- process theory 
(Stanovich 2012) implies we all use the same cognitive systems. 
The intuitive System 1 deploys only the salient possibility to 
derive a decision. In contrast, System 2 allows to complement 
the structure model thanks to personal knowledge. People use 
System 1 by default, unless circumstances require deliberate 
reasoning. Prior knowledge can be part of such circumstances, 
when available information contradicts such knowledge, like for 
Betty and Cesar. Thus, distinct pools of knowledge lead to in-
terindividual differences in the activated reasoning process and 
in the structure model. As an individual's structure model of a 
situation is constructed using this person's knowledge, it will 
only contain elements the individual can also interpret to derive 
behaviour models consistent with that structure. Second, once 
the structure model is constructed and one reasoning system is 
in control, the behaviour models and the decision follow. This 
implies that two individuals with equivalent structure models 
and the same reasoning process activated (like Betty and Cesar) 
deploy the same behaviour models and reach the same decision.

Third, this also means that boundary mismatches an individual 
commits at the level of the structure model (structure model er-
rors) are predictable, given the individual's relevant knowledge. 
Fourth, in System 2 mode, the behaviour model errors are a con-
sequence of structure model errors.

When a conclusion is reached, the decision can lead to an action 
on the system that is presumably beneath the situation, but it 

can also be a rule. For example, people make choices between 
taking personal action to help reducing CO2 emissions and not 
taking personal action; an individual's personal rule for select-
ing one option or the other depends on if they concluded that 
CO2 emissions can be reduced enough to halt the rise in global 
temperatures.

Last but not least, context- specific knowledge is bound to the 
situations inside a particular context, but systems principles 
apply across contexts. This introduces a hierarchical difference 
between two sets of knowledge: ‘domain as system’ and ‘systems 
per se’.

Based on these points, we propose a conceptual framework 
of systemic thinking about complex dynamic situations. This 
framework conceptualizes two interdependent domains: the 
individual and the complex dynamic situation (as illustrated in 
Figure 2, where the individual appears as a rectangle).

The individual is subdivided in two spheres. First, actions per-
formed (revealed choices) are observable from the outside. To 
represent this sphere, we propose three stages of the systems 
thinking skill (following Mehren et al. 2018). The second sphere 
of the individual (separated by a light grey line in Figure 2) is 
mental, and there we locate personal knowledge, the reasoning 
systems 1 and 2, the structure model (mental model of a dy-
namic system) and the behaviour models.

System 1 is in control unless circumstances require System 2. 
When situational information is perceived, the momentary 
structure model combined with the individual's knowledge can 
lead to activation of System 2 and to modulation of the structure 
model. The structure model can be articulated and is the basis 
for assessing whether the individual is at least at Stage 1 of the 
systems thinking skill. Depending on which cognitive system 
is operating, one or several behaviour models are deployed, and 
when articulated, they serve as data to evaluate whether this 
person is at Skill Level 2 (past behaviours) or 3 (possible future 
behaviours). If the processing of the behaviour model(s) leads to 
generate a rule, the person may be classified at Stage 3. Then, the 
decision is implemented, and a new iteration begins.

The cognitive theory of mental models does not specify what 
kind of knowledge is contained by an individual's knowledge 
base. Indeed, long- term memory contains distinct kinds of el-
ements, ranging from concrete concepts allowing to recognize 
objects, to conceptions, principles and methods. Adhering 
to the distinction between conceptions and context- specific 
knowledge (Mambrey, Schreiber, and Schmiemann  2020), 
we propose that knowledge of systems principles belongs to 
the pool of conceptions an individual can have. Without try-
ing to be exhaustive, the ideas of interdependence and feed-
back loops, multiple causal influences (inward and outward), 
non- linear reactions or emergence are conceptions. Knowing 
classes of particular systems, such as the carbon cycle or the 
water cycle, is then context- specific knowledge. This is more 
concrete than conceptions, but still more abstract than knowl-
edge of one specific system. These types of knowledge inter-
act: Subject matters like Earth systems science teach about a 
context by teaching, say, the carbon cycle, and this indirectly 
develops conceptions, too.
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Such knowledge enables individuals to identify a system's 
boundary and its internal organization, equivalent to systems 
thinking Skill Level 1 (Mehren et al. 2018). For Level 2 (under-
standing how past behaviour emerged from the interactions 
between parts of the system), one person may remember how 
the components of a particular system interact and react to 
one another, whereas another person can know some system 
principles and derive an equivalent understanding. As it is 
easier to connect the structure model to behaviours already 
observed than to project likely behaviours, people will explain 
past behaviours (Skill Level 2) before they predict future con-
sequences of interventions and devise regulations (Level 3). 
One can suspect that the level of abstraction of these elements 
makes them transferable across diverse context domains; yet 
a discussion of differences and similarities between ‘applied’ 
and ‘pure’ systems knowledge is beyond the scope of this 
article.

Next, the three initial behaviour models only deployed by System 
2 connect with systems thinking conceptions:

P2: not- p and not- q. The polarity of causal links has two facets 
because the causing variable can change with either a positive 
or a negative sign. The facet associated to a positive change sign 
(the variable has higher values than what would otherwise have 

been the case) is salient: If there is a positive link from CO2 in 
the atmosphere to global temperatures, and the briefing infor-
mation describes a scenario of decreasing CO2, the salient pos-
sibility is that decreasing CO2 leads to lower temperatures. But 
the link also implies that an increasing stock of CO2 causes tem-
peratures to be higher than what would otherwise have been 
the case. While not salient for individuals unfamiliar with the 
conception of polarity, this is true and can be inferred through 
deliberate reasoning.

P3: not- p and q. Are there other factors influencing the variable? 
This remits to a basic conception of the world. Individuals be-
lieving that things happening are the consequences of a single 
cause and that one event or action will affect one thing have no 
reason to accept this as possible. However, those assuming that 
there is more than one cause are likely to accept P3. Their mod-
ulation process may even deploy the possibility of p and not- q, 
as other factors, such as a decrease in CO2 absorption because of 
hotter oceans and diminished forests, may outweigh the effect 
of a decrease in CO2 emissions.

The framework also comprises rules (also referred to as de-
cision policies). Someone who is about to take a decision can 
instantiate a set of conditional assertions like the emission ex-
ample and mentally go through the possible effects. The result 

FIGURE 2    |    A conceptual framework of systems thinking about complex dynamic situations distinguishes the domain of externally observable 
actions from the domain of mental structures and processes.
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of comparing these can be expressed as production rules, 
structured like conditional statements ‘if <conditions> then 
do <actions>’. In the realm of the cognitive theory of mental 
models, such rules are deontic conditionals prescribing what 
to do in response to certain conditions (Khemlani, Byrne, and 
Johnson- Laird  2018, 1888). Others have proposed a frame-
work linking the perceived causal structures to decision rules 
via strategies (Gary and Wood 2016, 104; Figure 1); however, 
they focused on econometric estimation of decision rules to 
replicate the decisions taken. The framework proposed here 
emphasizes the process leading from a structure model to 
decision rules through the deployment and processing of be-
haviour models. This feature provides a connection between 
research on how people represent the structure of complex 
dynamic problems and on deliberate decision- making in such 
situations. Several research questions arise.

4.2   |   New Research Questions

First, it is now becomes an empirical question to which point 
both types of mental model can be elicited sufficiently to cor-
roborate the respective kinds of mental model error discussed.

Second, if we recall that the decision- maker interacts with the 
underlying dynamic system over several iterations, a ques-
tion concerning the dynamics of the two cognitive processes 
arises. Because System 1 consumes less energy than System 2 
(Stanovich  2012), the individual will only appeal to System 2 
when there is a need for it. However, System 1 implies incom-
plete processing, misjudgements and flawed decisions that lead 
to surprise effects. Gaps between the expected results of deci-
sions in one iteration and the actual results observed after the 
fact can hint at that need. Error feedback (Metcalfe 2017) may 
then trigger System 2 and open the possibility of modulation, 
leading to changes in the model, which in turn will update 
the set of deployed behaviour models. Elicitation during the 
iterations is therefore expected to provide data to detect such 
changes (Schaffernicht 2019; Schaffernicht and Groesser 2011; 
Schaffernicht and Groesser 2024).

Third, an additional question is whether the mind only operates 
with one of these cognitive processes at a time or whether partial 
activation of both reasoning systems is possible. As an example, 
highly trained individuals, such as aircraft pilots, easily interact 
with emergent dynamically complex flight situations that leave 
almost no time for reflection, instantly classifying the problem 
without deliberate reflection. We assume that training can en-
able people to have instant modulation of their structure model, 
especially so in what regards conceptions.

Fourth, most citizens, voters, consumers and producers are not 
trained in all the context domains they interact with. In the dis-
cussion contributed by Lane and Rouwette (2023), their think-
ing would therefore be rather ‘naïve’ than ‘sophisticated’; but 
nevertheless, they take decisions and affect dynamic political, 
economical, social and natural systems. However, even with-
out context- specific knowledge, people reasoning deliberately 
commit fewer errors, which leads to asking which kind of sit-
uational cues trigger System 2. Interestingly, the meaning of 
words in the assertions can trigger modulation (Johnson- Laird 

and Byrne 2002), calling for an examination of potential fram-
ing and priming effects.

A fifth question refers to the generalization and transferabil-
ity of knowledge. Systems knowledge is abstract and can take 
advantage of common features in the deep structure of super-
ficially different situations. Analogical reasoning may allow 
the transfer of knowledge gained from one situation to another, 
superficially distinct situation (Gonzalez and Wong 2012), lead-
ing to the question of which factors influence the number of in-
stances someone needs to abstract patterns out of the situations, 
generalize and build a stock of systems knowledge.

5   |   Conclusions

We introduced a conceptual framework that describes the 
reasoning process leading from mental models of the causal 
structure of a complex dynamic system (structure models) to 
the assessment of possible system behaviours. The framework 
combines these structure models with the cognitive theory of 
mental models and its mental models of possibilities, here re-
ferred to as behaviour models because each represents a possible 
behaviour. Considering a complex dynamic situation, the most 
salient behaviour model comes to mind intuitively, but less ob-
vious possibilities require deliberate mental effort. The frame-
work represents systems thinking as a cognitive process using 
either the intuitive reasoning System 1 or the deliberate System 
2, and where the deliberate one has access to prior knowledge 
of context- specific aspects and of general conceptions (systems 
principles).

We showed how context- specific knowledge and systems prin-
ciples influence structure models and how behaviour models 
are deployed and processed based on the structure model. Two 
types of mental model errors appeared, both leading to flawed 
conclusions. First, structure model errors occur when relevant 
elements of the situation are missed or misconstrued. This can 
happen because the person uses the intuitive reasoning system 
and makes no use of relevant knowledge or because there is a 
lack of relevant knowledge (context- specific or conceptions). 
Behaviour model errors have several forms: deploying errone-
ous possibilities, not deploying relevant possibilities and mis-
judging whether a possibility can realistically materialize in the 
analysed situation. The intuitive reasoning system generates all 
of them because it only accounts for the most salient possibility. 
In contrast, the deliberative reasoning system produces these 
errors when someone lacks relevant pieces of knowledge. We 
conclude that there may be several reasons for a low level of skill 
observed in systems thinking.

The framework is compatible with the skill- set view of systems 
thinking. The reasoning systems and their interaction with 
prior knowledge provide a link from perceived causal structure 
to decision rules. This leads to new questions for systems think-
ing research. We have proposed five research questions.

Currently, the proposed framework is entirely conceptual and 
only draws on prior publications from two distinct fields of 
mental model research, together with systems thinking litera-
ture. This is an important limitation calling for empirical data. 
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Moving in this direction, we are designing lab experiments to 
encounter individuals from diverse perspectives with complex 
dynamic systems. We also observed a need for advancement 
in elicitation methods. Another limitation stems from the dy-
namic character of cognitive research on reasoning, where fu-
ture advancements may become important for systems thinking 
research. Despite these limitations, we hope other researchers 
will find this mental model framework useful, advancing it con-
ceptually as well as empirically.

Endnotes

 1 Elicited variables are therefore recorded with a ‘type’ attribute initially 
set to ‘undefined’, but this can be changed to ‘stock’, ‘flow’ or ‘inter-
mediate’. Links and loops have a ‘polarity’ attribute with default value 
‘undefined’ (similar with a ‘delay’ attribute).

 2 Interpreting the words ‘global warming’ as a description of the be-
haviour of global temperatures.

 3 In addition, global temperatures should be decomposed into at least 
two parts: atmosphere plus upper ocean, and deep ocean separately, 
again with flows from net radiative forcing and heat transfers between 
both containers. As this is not required for our point, we have left it out 
of the discussion.
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