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Theories of learning distinguish between elemental and configural stimulus processing depending on whether stimuli are

processed independently or as whole configurations. Evidence for elemental processing comes from findings of summation

in animals where a compound of two dissimilar stimuli is deemed to be more predictive than each stimulus alone, whereas

configural processing is supported by experiments using similar stimuli in which summation is not found. However, in

humans the summation effect is robust and impervious to similarity manipulations. In three experiments in human predic-

tive learning, we show that summation can be obliterated when partially reinforced cues are added to the summands in

training and tests. This lack of summation only holds when the partially reinforced cues are similar to the reinforced

cues (experiment 1) and seems to depend on participants sampling only the most salient cue in each trial (experiments

2a and 2b) in a sequential visual search process. Instead of attributing our and others’ instances of lack of summation to

the customary idea of configural processing, we offer a formal subsampling rule that might be applied to situations in

which the stimuli are hard to parse from each other.

The process of generalization is one of the most studied topics in
the psychology of learning and decision-making. Of special inter-
est is the problem of compound generalization, where an organism
needs to predict the consequences of the presence of multiple cues
that have independently predicted the same outcome in previous
occasions. In this situation, howmuch outcome will the organism
predict? In the laboratory, the problem is modeled through a sum-
mation design, where two cues—A and B—are separately paired
with the same outcome during training, and responding to a com-
pound of the two stimuli—AB—is assessed in a final test. A summa-
tion effect is obtainedwhen there ismore responding to AB than to
each of A or B alone (Kehoe et al. 1994; Aydin and Pearce 1997;
Thein et al. 2008; Soto et al. 2009).

The summation effect is readily anticipated by a class of
Pavlovian conditioning models called elemental (Rescorla and
Wagner 1972), which assume that subjects represent A and B inde-
pendently and estimate the outcome of the compound as a linear
sum of their individual predictions. This additive generalization
strategy makes efficient use of the available evidence under the as-
sumption that the two cues are independent causes of the outcome
(Pérez et al. 2018). Configuralmodels, in contrast, assume that sub-
jects process and associate whole configurations with the out-
comes that follow; total responding to AB depends on the
similarity between the training configurations A andB and the test-
ing configuration AB (Pearce 1987; Pearce 1994; Pearce 2002). As
AB shares half of its cues with A or B, organisms should predict
an outcome equal to the average of A and B alone (Pearce 1987),
and summation should not be observed.

Experimental evidence on this question in animals has dem-
onstrated a more general role of similarity on summation. Indeed,
not only the similarity between the compound AB and each of the
components A and B is important, but also that between A and B
themselves. The general result is that summation is obtained
when A and B are dissimilar, such as when they come from differ-

ent modalities (e.g., visual and auditory) (Kehoe et al. 1994; Thein
et al. 2008), but not when they are similar, such aswhen they come
from the same modality (for example, visual) (Aydin and Pearce
1995; Aydin and Pearce 1997). These results have led to a gamut
of formal models incorporating flexible representations in which
similarity between the elements in a compoundmakes itmore like-
ly to obtain responding to AB closer to the predictions of elemental
(i.e., full summation) or configural (i.e., null summation) theories
(McLaren andMackintosh 2002; Harris 2006; Melchers et al. 2008;
Wagner 2008; Thorwart et al. 2012; Soto et al. 2014b; Pérez et al.
2018).

In contrast to the animal data, evidence for a role of similarity
on summation in humans is scarce. In a series of six studies on
causal learning, we found no evidence for this hypothesis across
several manipulations of similarity between A and B (Pérez et al.
2018). Instead, we observed strong and consistent summation,
with participants disregarding variables such as color, shape, and
spatial contiguity when making their predictions. In that study,
we concluded that the simplicity of the visual stimuli allowed par-
ticipants to easily identify them on the screen, assume them as in-
dependent causes of the outcome, and sum the individual
predictions when presented with the compound AB (Pérez et al.
2018). Under such conditions, summation should always follow.

Interestingly, a few studies in humans have shown that fac-
tors such as spatial and temporal contiguity might play a role in
modulating summation (Glautier 2002; Glautier et al. 2010; Soto
et al. 2014a). This is consistent with the fact that most of the evi-
dence for configural processing in animals comes from pigeon
autoshaping experiments, where animals receive pairings of visual
stimuli and food, which results in the animals approaching and
pecking the stimuli (Aydin and Pearce 1995; Aydin and Pearce
1997). There are two features of this type of experiment that may
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explainwhy summation is not obtained. First, the proximity of the
pigeon to the screen in which stimuli are displayed limits its ability
to sample whole stimulus configurations. Second, the peck’s target
is centered on the area dorsalis of the pigeon’s retina (Goodale
1983; Martinoya et al. 1984), which is considered a “second fovea”
due to its high density of cells. These two factors suggest that pi-
geons may be sampling visual information from a circumscribed
area (the area predictive of reward), ignoring the rest of the stimu-
lus (Wasserman and Anderson 1974; Dittrich et al. 2010; Soto et al.
2012). Consequently, weak summation may well arise from ineffi-
cient sampling of a stimulus compoundwithin a visual search pro-
cess, rather than from configural processing prompted by strong
similarity between components.

Adirect implicationof this hypothesis is that visual stimuli de-
signed to bemore difficult for humanparticipants to parse and pro-
cess in parallel should promote sequential search and thus weaken
the summation effect. To this end, in experiment 1we trained com-
plex stimuli where the target stimuli, A and B, are presented always
in compound with other nontarget stimuli, X and Y, and varied
similarity across target and nontarget cues. Under a visual search
process, the more similar target and nontarget cues are the more
likely it is that summation will disappear, as participants will only
sample one of the stimuli in the compound (Duncan and
Humphreys 1989). In contrast, themore dissimilar target and non-
target cues are, themore likely it is that thewhole configurationwill
be processed. In this case, the results should be consistent with the
predictions of elemental models in which
each element is processed, anticipating a
positive summation effect. In experi-
ments 2a and 2b, we further tested this
subsampling hypothesis by training tar-
get cues A and B with different outcome
values and found that themajority of par-
ticipants reported their predictions for the
compoundbased on the value of onlyone
of the target cues. We present a formal
subsampling model that can capture the
results ofnull summation found inour ex-
periments and previous experiments in
animals usually interpreted in favor of
configural processing of stimuli.

Results

Experiment 1
In all experiments in this study, partici-
pants were asked to play the role of an al-
lergist who had to predict the levels of
allergy caused bydifferent drugs in a hypo-
thetical patient, Mr. X (see Fig. 1).
Participants were required to give an as-
sessment of the level of allergy that each
drug would cause in Mr. X, on a scale of
0–35. After clicking with the mouse on a
rating scale to make their predictions, par-
ticipants had to confirm the rating by
clicking ona buttonbelow the rating scale.
Cues were presented 30 times each, in ran-
domized order. Trials were self-paced.

After confirming the level of allergy
expected, participants were presented
with a feedback screen with the message
“Correct!” if their estimation was correct,
or the message “Incorrect!” if the estima-
tion was incorrect (see Fig. 1). After this

screen, they were presented with the feedback message “10 points
of allergy out of a total of 35” for cues that predicted allergy, or “0
points of allergy out of a total of 35” for cues that did not predict
allergy. To encourage learning and attention to the task, each in-
correct assessment was followed by a 5-sec message (i.e., a time
out); a 1-sec message was used for correct assessments.

The novel addition of this design was the type of training
used. Each training trial included one target cue (i.e., a cue predic-
tive of the outcome; A, B, C, or D) and two nontarget cues (i.e., cues
not predictive of the outcome; X and Y). As can be appreciated in
Figure 2, all compounds (AXY, BXY, CXY, DXY, and ABX/ABY)
consisted of the three cues joined at a central solid circle, with sin-
gle cues consisting of eight solid circles each. Therefore, each com-
pound consisted of 25 circles connected by black lines. In addition,
we rotated the compound around its central circle across trials, so
that each cue was presented in three possible spatial positions
and directions. This ensured that the number of stimuli on each
configuration was the same for both training and test phases; the
spatial position and direction of the target components did not fa-
cilitate their identification.

To test for summation, in some trials of the test phase both A
and Bwere presented in the same configuration, but with only one
of the nontarget cues (either X or Y, counterbalanced). Cues C and
D were included to check which participants correctly learned the
contingencies between the cues and their respective outcomes.
Because our aim was to investigate generalization of learning,

Figure 1. Trial design for all experiments. In each training trial, participants observed one target cue
(A, B, C, or D) and two nontarget cues (X and Y) in the same configuration (AXY, BXY, CXY, and DXY)
and were asked to rate the level of allergy they thought would be produced by the stimulus on a scale of
0–35. After an interstimulus interval, feedback was presented (“Correct!” if the prediction was correct,
and “Incorrect!” if the prediction was incorrect), followed by the message “Allergic reaction: 10 points in
the allergy scale” for cues that predicted allergy or “No allergic reaction: 0 points in the allergy scale” for
cues that did not predict allergy. During the test phase, the cues were presented in the same way as in
training, but now the compound AB, together with one nontarget cue (X or Y) was presented in some
trials (i.e., ABX or ABY). The predictions were assessed in the sameway as in training but no feedback was
given to participants during the test phase. Each cue was presented twice during the test.
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only those participants who correctly identified the contingencies
during training (i.e., showed learning) were included in the final
analysis. We used the same criteria as in our previous studies on
summation (Pérez et al. 2018). Since the cues were designed to be
as abstract as possible so as to avoid any prior preference for any
of them, the assignment of cues and shapes was kept fixed in all
groups.

As can be appreciated in Figure 2, experiment 1 comprised
three groups. Group intra included cues that varied only in shape
(i.e., intradimensional differences). For the two extra groups, cues
varied both in shape and in color (i.e., extradimensional differenc-
es). In group extra, A and B had different colors (black vs. gray), but
the colors were shared with the nontarget cues X and Y (one of
them black and the other gray) (see top left stimulus in Fig. 2).
This means that although A and B can be easily distinguished,
they are not easily distinguishable from the nontarget cues X and
Y. Finally, in group extra2, A and B had different colors (black vs.
gray), and they also differed in color from the nontarget cues X
and Y (light gray with black contours). As a consequence, the sim-
ilarity between target and nontarget cues was lowest in the intra
group and highest in the extra2 group.

Figure3 sketches thepotential of this design to examine thevi-
sual search hypothesis. Consider first group extra at the top of the
table. During test with the compounds ABX/ABY in this group,
one of the target cues shares color with the nontarget cue X or Y,
which would make the other target cue “pop out” from the com-
pound (Treisman 1988). Once the “popped-out” cue is sampled,
the search process ends and the participant reports the value of
the sampled cue. Under a search hypothesis, therefore, we should
not expect summation in this group. The same result is anticipated

for group intra. For this group, however,
the strong similarity between targets and
nontargets encourages a serial search
strategy. It is expected that participants
in group intra show a tendency to stop
their search and report the rating associat-
ed with the first target found, a phenome-
non known as “satisfaction of search” in
the visual search literature. Such a strategy
reduces cognitive and timing costs com-
pared with exhaustive search (Wolfe
2018). In contrast, the predictions for
group extra2 are in line with those of ele-
mental learning theories. In this case, dis-
similarity of all cues results in parallel
processing of the two target cues, and re-
porting of an allergy rating >10 (i.e., a
summation effect). In the limit, if partici-
pants can parse all the cues and process
them in parallel without any generaliza-
tion between them, we should expect a
rating of 20 for the compound.

The results are shown in Figure 4,
where we present the mean causal ratings
to the trained (AXY and BXY) and novel
(mean of ABX and ABY) compounds in
the three groups of experiment 1. The
figure indicates a summation effect in
the form of higher ratings for the
novel compounds than for trained com-
pounds in group extra2, but no evident
summation in groups extra and intra. A 3
(group) × 3 (compound) mixed
design ANOVA confirmed the reliability
of these observations in showing a signifi-
cant group× compound interaction

(F(2,55.5) = 4.00, P = 0.02, h2
p = 0.13, 90% CI [0.04, 0.17]). Sub-

sequent simple effects of compound in eachgroup revealed that the
mean ratings for ABX/ABY reliably differed from ratings
for the trained AXY and for BXY in group extra2 (t(26) = 4.82, P<
0.001, D=0.77, 95% CI [2.81, 6.91] and t(26) = 4.81, P<0.001, D=
0.77, 95% CI [2.83, 6.79], respectively) but did not in groups extra
(t(12) = 0.77, P=0.46, BF01 = 2.79 in both cases) and intra (t(17) =
1.16, P=0.26, BF01 = 2.30 and t(17) = 1.17, P=0.26, BF01 = 2.28, re-
spectively). The main effects of compound and group were also re-
liable (F(1,55.05) = 14.97, P< 0.001, η

2
p=0.21, 90% CI [0.10, 0.31] and

F(2,55) = 3.80, P=0.03, η
2
p=0.12, 90% CI [0.01, 0.25], respectively),

but they aremainlyaccounted for by the summationeffect of group
extra2 described above.

Toour knowledge, this is thefirst demonstration of humans be-
ing sensitive tomanipulations of similarity between target and non-
target cues in a predictive learning task. Importantly, we obtained
evidence of participants showing no summation in groups intra
and extra, a result that is relatively uncommon in the human litera-
ture, as far as we know previously obtained only by Glautier et al.
(2010). This was achieved by using a design that made it more diffi-
cult for participants to distinguish the cues being presented.

We argue that our results are consistent with a serial search
process of overt attention that makes participants sample one
cue in groups intra and extra and a parallel search process in group
extra2 where all the cues in the compound are considered in mak-
ing their predictions during the test with ABX/ABY. Consistent
with this, we also found that scores for the novel ABX/ABY com-
pound in the different groups followed a bimodal distribution
with peaks in 10 and 20, reflecting the fact that participants find
either one or both of the target cues to make predictions. This

Figure 2. Stimuli used in the experiments reported in this article. Each stimulus was formed by a
central point that branched out into three different components. Target cues A and B were accompa-
nied by two other nontarget cues, X and Y. The compound AB was accompanied by one of the non-
target stimuli—X or Y. All stimuli were presented in three different planar orientations, so that each
component was equally likely to appear in one of three positions. Cues A, B, C, and D were the
target cues. Cues X and Y were contextual or nontarget cues that accompanied target cues in each con-
figuration. Stimuli in group intra varied only in shape. Stimuli in groups extra and extra2 varied in both
shape and color.
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can be appreciated in the distribution of points in Figure 4B, but
also in Figure 4C, which shows a density plot of score for the com-
pound ABX/ABY in each group. As can be seen, as similarity be-
tween target and nontarget cues decreases from intra to extra2,
the proportion of participants processing all cues and consequent-
ly showing full (null) summation increases (decreases), with virtu-
ally no participants scoring in between these two values, which is
what learning theories would predict based on generalization
mechanisms. The bimodality of scores was confirmed by
Hardigan’s dip test (D= 0.10, P<0.001) and a mixture model that
yielded a generativemodel with twoGaussians as the best explana-
tion of the distribution of scores (Gaussian 1: µ1 = 9.75, σ=2.65;
Gaussian 2: µ2 = 22.10, σ= 2.65).

Experiments 2a and 2b
To further test how subsampling of cues can be brought about by vi-
sual search, in experiments 2a and 2b we divided participants into
two groups. Group intra was a replication of group intra of experi-

ment 1 in which the outcome associated with both AXY and BXY
was 10 points of allergy. As in experiment 1, we expected themajor-
ity of participants to rate the compound as producing 10 points of
allergy. The critical manipulation was including two different out-
come values for AXY and BXY in group intra2. In experiment 2a,
we assigned 10 points of allergy for cue AXY and eight points of al-
lergy for cue BXY; this assignmentwas reversed in experiment 2b. To
the extent that our stimulusmanipulation prompts a search process
and limited sampling and processing of a single cue, themajority of
participants in group intra should rate the compound ABX/ABY as
producing either eight or 10 points of allergy, indicating that they
have responded in accordwith the value of only one of the two com-
ponents. More importantly, the value reported by participants in
group intra2 should be the opposite ofwhat participants in group in-
tra report. For example, if the features of stimulus AwithinABX/ABY
are somehow more salient than those of stimulus B, participants in
group intra2 should report 10 points of allergy for ABX/ABY in ex-
periment 2a and eight points in experiment 2b.

Given that the goal of experiments 2a and 2b was to test
whether participants rate the ABX/ABY compound similarly to ei-
ther AXYor BXY,we focus our analysis on the distribution of scores
and the nonparametric Friedman’s test. Figure 5B presents the bar
plot and individual scores shown in jittered points for the trained
(AXY and BXY) and novel (ABX and ABY) cues in the two groups of
experiment 2a. As expected, most participants rated AXY and BXY
in accord with their trained outcomes (10 for AXY in both groups,
and eight and 10 for BXY in groups intra and intra1, respectively).
In group intra, median scores were virtually identical for cues AXY,
BXY, and ABX/ABY with very little variation around 10 points of
allergy, which led to no reliable differences in the three distribu-
tions [X2(2) = 0.75, P=0.16]. Differences were apparent in group in-
tra2 [X2(2) = 44.69, P<0.001], where the scores for ABX/ABY
(med =8.5) were closer to BXY (med=8) than to AXY (med=10).
Dunn–Bonferroni post-hoc tests indicated that the distribution
of ABX/ABY differed significantly from both AXY (P=0.01) and
BXY (P=<0.01) after Bonferroni adjustments.

The results of experiment 2b are summarized in Figure 5C. As
can be appreciated, the outcome of this experiment is basically the
mirror image of experiment 2a: In the case of group intra, we repli-
cated for the third time the absence of any reliable difference
among the cues [X2(2) = 2.46, P=0.30], which varied in a very
small range around 10 points of allergy. In contrast, in group intra2
the Friedman’s test indicates reliable differences among the cues
[X2(2) = 55.00, P<0.001], where the ratings for ABX/ABY (med=
10) were again very similar to BXY (med=10) and different from
AXY (med=8; P=1.00 and P<0.001). Thus, ratings for the novel
compounds ABX and ABY seem to be determined by the predictive
value of B. This change in the distribution of ratings from experi-
ment 2a to experiment 2b is not anticipated by any theory of asso-
ciative learning and is consistent with a visual search approach
where participants sample only one of the two target cues to
make their predictions of the compound.

A model of limited cue sampling
Taken together, these results provide evidence for the hypothesis
that a visual search process can bring about subsampling of cues
and therefore weak to no summation in humans when cues are dif-
ficult to parse and distinguish in a compound.

The purpose of this section is to show how animal results that
have traditionally been conceived of as being a consequence of
configural processing may also be explained by subsampling of
stimuli within a complex visual configuration, such as those used
in pigeon autoshaping where most of the evidence for configural
processing, and in particular lack of summation, are found.We pre-
sent simulations of a formal model based on this idea.

Figure 3. Predictions of a visual search hypothesis for experiment
1. Under a visual search hypothesis, the difficulty of individuating cues
in this design leads participants to perform a visual search for the target
cues in the display (Wolfe 2018) and subsample from the whole configu-
ration. Because during training there is always a single target cue in a com-
pound, all groups learn to sample that cue during training (albeit with
varied difficulty, depending on similarity between target and nontarget
cues). Similarity between target and nontarget cues fosters serial process-
ing in groups extra and intra. The result is that participants in these groups
would mostly sample a single cue from the testing compounds ABX/ABY
and report its associated rating of 10. On the other hand, all cues are pro-
cessed in parallel in group extra2, predicting a rating closer to 20 for the
compounds ABX/ABY.
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Learning rule
The model we propose learns according
to reinforcement prediction error (Bush
andMosteller 1951). The predictive value
or associative strength of stimulus i in tri-
al n, vi

n, is updated in accord with
Equation 1

vn+1
i = vni + aib(ln − vni ). (1)

This algorithm assumes that the
change in the predictive value of stimulus
i is determined by the difference between
the observed outcome and the current
outcome expected from that stimulus.

Stimulus perception
The agent perceives cues in isolation and
process them independently, updating
their predictive value in accord with
Equation 1. However, when a compound
of cues is presented, the agent perceives
visual features of the compound that are
absentwhen the cues are presented in iso-
lation. For example, as long as cues are
presented in close proximity during com-
pound trials (i.e., either overlapping or
close to one another), it is possible that
the subject will sample visual informa-
tion in some areas of the display that are
unique to compound trials, such as line
intersections, corners, etc., which are
not available when stimuli are presented
in isolation. This makes the compound
trial different from a single-cue trial by
the addition of those features in the configuration. We assume
that the agent treats those added features the same as any other
cue.1

Sampling process
Weassume that the probability of stimulus i being processed in any
given trial, including any additional stimuli perceivedwhen a com-
pound is presented, is given by a softmax function incorporating
salience and predictive value of each stimulus (Sutton and Barto
1998; Sanderson and Bannerman 2011):

pi = e(haivi)

∑
j e

(hajvj)
, (2)

where η is a decisiveness or temperature parameter that determines
the extent towhich the agent is biased to sample cueswith low sali-
ence or predictive value ( j= [1, 2, …, i, …k]).2 Finally, in each trial

the agent samples from the stimulus array S= [S1, S2,…, Sk] for a sin-
gle stimulus to process. We assume that the sampled cue Si follows
a categorical distribution:

Prob[S = Si|p] = Categorical(p) (3)

where p= [p1, p2, …, pk] is the vector of probabilities given by
Equation 2 and k is the number of stimuli presented in a given trial
during training and testing.

To illustrate how thismodel operates, see the schematic repre-
sentation of Figure 6. In this example, we assume that a compound
AB is presented. In this case, the configuration produces an addi-
tional unique cue X that is perceived by the agent for that particu-
lar combination of cues. Once the agent samples cue A (shown in
red), its value is updated according to the difference between the
current value or prediction (vi) and the outcome observed (λ) in
that trial. For the following simulations, we assume that the sali-
ence of the unique cues is equal to the salience of the target cues;
that is, αtarget=αnonTarget, and that the order of presentation of differ-
ent trial types is random.

To allow our agent to sample cues with low predictive value,
we set the temperature parameter η to 30 and the initial predictive
value of each cue, both target and unique cues, vi, to 0.05. Unless
otherwise noted, the value of λ was set to 1 for reinforced trials
and to 0 for nonreinforced trials. Finally, we assume that an addi-
tional cue for each one of the possible combinations of cues is

A C

B

Figure 4. Design and results of experiment 1. (A) Letters denote cues, represented by different chem-
ical shapes that can cause different levels of allergy to a fictitious patient. Each cue is represented by a
capital letter. Cues A, B, C, and D were the target cues (shown in bold), whereas X and Y were nontarget
cues. In experiment 1, all cues were followed (+) or not followed (−) by the same level of allergy (10
points of allergy out of a total of 35). (B) Average ratings given to each cue during the test. Jittered
points represent individual ratings. (C) Density plots of ratings given to the ABX/ABY cue during the
test in the three different groups.

1A similar idea is proposed in Wagner and Rescorla (1972) and REM (Brandon
et al. 2000; Wagner 2008). However, in contrast to these models, we do not
rely on internal representations but simply assume that objective properties of
stimuli are perceived when compounds of cues are presented in close spatial
proximity.
2Formally, the model should include the absolute value of ν, since cues with
high inhibitory strength (negative v) should command more attention than
other cues in a given array (Parkhurst et al. 2002). However, such implementa-
tion is only relevant in a model that allows for negative associative values for
cues, which is not the focus of our model.
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added when a compound is presented.3 We ran 80 simulations for
each experimental design. The values shown in the figures are the
average values across all simulations.

Note that the model presented here is an attempt to capture
only the “serial processing with satisfaction of search” to explain
results from groups extra and intra in our experiments. The parallel
processing strategy assumed to happen in group extra2 is not
meant to be captured by the model as it is presented here. We as-
sume that traditional elemental models, such as the Rescorla–
Wagner model (Rescorla and Wagner 1972), are applicable under
conditions that foster parallel processing (i.e., clearly identifiable
component cues). In other words, we assume a model in which
only elemental processing of cues occurs, but in which full sam-
pling (i.e., parallel search) or subsampling (i.e., serial search with
satisfaction of search) of cuesmakes behavior approximate the pre-
dictions of elemental and configural theories, respectively, but we
do not provide in this model a decision rule by which the percep-
tual system deploys full or subsampling of cues.

Summation
We start by replicating the conditions of a simple summation de-
sign in pigeon autoshaping. To this end, we assume for simplicity
that both components predict the same outcome value and have
equal saliencies (αA=αB= 0.4). The results of this simulation are

shown in the right panel of Figure
7A. As shown in the figure, the subsam-
pling model correctly predicts the failure
to find a summation effect in these exper-
iments. Under the subsampling model,
the system randomly samples the unique
cue that is only perceived in the testing
phase (ABX, where X is the unique cue),
which tends to bring down responding
to AB (ABX) compared with the elements
A and B. The left panel of Figure 7A shows
a similar design reported by Rescorla and
Coldwell (1995) using pigeon autoshap-
ing, where the investigators failed to
find a summation effect.

In a second set of simulations, we in-
vestigated the predictions of a subsam-
pling approach when cue B predicts a
lower outcome value than A, trying to
match the conditions of experiment 2a.
To account for the fact that B seemed to
be more salient and drive responding in
that experiment, we set the value of αA
to 0.4 and the value of αB to 0.5. A value
of 0.4 was also set to the unique cue X
(αX=0.4). To account for different out-
come values predicted by each cue, we
set λA =1> λB=0.95. The model correctly
predicts the pattern of results of experi-
ment 2a, in that responding to A, the
most salient cue, is higher than to B (see
Fig. 7B). The model also replicates our
finding that responding to AB would be
closer to B than to A. Last, we tried to
match the conditions of experiment 2b

by reversing the roles of A and B, so that B predicts a higher out-
come value than A (λA =0.95, λB=1). Again, the subsampling mod-
el correctly captures the pattern of behavioral results in this
experiment, anticipating that responding to AB should be closer
to the outcome predicted by B, and higher than in experiment
2a (see Fig. 7C).

Differential summation
In another experiment in pigeon autoshaping, Pearce et al. (1997)
found that responding at test for the compound of three cues, ABC,
was weaker when the three cues were separately paired with a rein-
forcer (A+, B+, and C+) than when the cues were paired with the
same reinforcer, but in compounds (AB+, AC+, and BC+) (see Fig.
8, left panel). The configural model of Pearce et al. (1997) can read-
ily account for these results under the assumption that the similar-
ity between the compounds comprising two cues (AB, AC, and BC)
and the tested compound ABC is higher than that between each A,
B, and C and the compound ABC.

Figure 8 (right panel) depicts the simulations of this design in
the subsampling model, which also correctly captures these data.
In the case of single-cue training, at the end of training ABC is com-
posed of four unique cues with very low predictive values (0.05
each, by assumption), whereas the same ABC compound is com-
posed of the same four unique cues, some of which have been ex-
perienced by the agent during training andhave therefore acquired
higher predictive values than in the case of single-cue training.
During the presentation of ABC at test, the agent sometimes sam-
ples these higher-valued unique cues. As a consequence, the agent
tends to respond more to the compound ABC after compound
training than after single-cue training, in agreement with the

Figure 5. Design and results of experiments 2a and 2b. (A) In experiments 2a and 2b, cues were fol-
lowed by different levels of allergy, which are represented by the numbers shown next to each of them.
The only difference between experiments 2a and 2b was the assignment of different levels of allergy
outcome to cues AXY and BXY in group intra2 (eight or 10 points of allergy, counterbalanced across
the two experiments). (B) Bar plots and individual ratings (shown in jittered points) given to each cue
during the test in experiment 2a. (C) Bar plots and individual ratings (shown in jittered points) given
to each cue during the test in experiment 2b.

3For example, if the compound ABC is presented, we assume that there is an
additional unique cue represented for each possible pair (AB, AC, and BC)
and the compound of three cues (ABC). The compound ABC is thus represented
as ABCXYZV, where X, Y, Z, and V are the additional cues that are perceived by
the agent.
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results observed by Pearce et al. (1997). In other words, our model
proposes that it is not the similarity between two-stimuli com-
pounds like AB and the test compound ABC that increases summa-
tion in this design, but rather the availability of additional cues
perceived by the subject that can be sampled during both training
and testing.

Reversing a conditioned inhibitor
Pearce and Wilson (1991) ran an experiment that included a
feature-negative design of the form A+, AB− in a first phase, and re-
inforced presentations of B alone in a second phase (B+; complet-
ing a negative patterning design across phases). In the learning
literature, the first phase turns cue B into what is referred to as a
conditioned inhibitor, meaning that B signals the absence of an
otherwise present reinforcer. In contrast to an elemental theory
that would predict B to recover its predictive value so that respond-
ing to AB should be higher than A or B alone at the end of the sec-
ond phase, Pearce and Wilson (1991) observed instead lower
responding to AB than A or B alone (see Fig. 9, left panel). This re-
sult is also anticipated by a subsampling approach (see Fig. 9, right
panel). During the first stage, A acquires more value than both B
and the unique cue represented for AB, which we called
X. During the second stage, B acquires value independently of
the subsampling process.

During the final test with AB, however, the agent still samples
the unique cue X, whose value has not been modified during the
second phase, staying at a low level. Responding to AB is therefore
lower than to either A or B.

Discussion

This article reports empirical evidence of similarity affecting sum-
mation in humans.

In experiment 1, when stimulus properties were designed to
make it difficult for subjects to parse them and deploy counting
strategies, the difference in similarity between target andnontarget
cues within a compound was reflected in different ratings for the
compound ABX/ABY during the test. In addition, although previ-
ous studies had demonstrated that summation could disappear

when participants’ assumptions are affected by prompting rational
rules concerning the independence of cues in a compound (Pérez
et al. 2018), we observed null summation in the absence of such
manipulations. We replicated this absence of summation in three
different experiments.

To our knowledge, only one previous study by Lachnit (1988)
obtained evidence for similarity affecting summation. Consistent
with the animal evidence using unimodal versusmultimodal stim-
uli, Lachnit (1988) tested compounds of visual stimuli that were
“separable,” varying in size and orientation, and observed a level
of summation similar to that predicted by elemental theory. In
contrast, when he used target stimuli considered to be “integral,”
varying in saturation and brightness, the summation effect became
weaker and closer to the predictions of configural theory. Although
the result appears to be similar to ours, there are important differ-
ences between the designs. In Lachnit (1988), the stimulus dimen-
sions belonged to a single object, whereas our stimuli were
presented in compound during training and the similarity was var-
ied between target and nontarget cues. Our approach is therefore
not directly applicable to the type of stimuli used by Lachnit
(1988). However, both studies illustrate the need to incorporate
what is known of perceptual mechanisms affecting the input to
the associative learning machinery.

A notable result in experiment 1 was that the driver of the
summation effect was brought about by the similarity between
the target cues A and B and nontarget cues X and Y, which is in
contrast to the notion of similarity proposed by learning models,
which assume that the driver should be the similarity between
the target cues. Figure 10 shows the expectations for experiment
1 based on the assumption of an effect of similarity on summation
in associative models. If similarity between cues A and B is the

Figure 6. A subsampling model. In each trial where the agent is present-
ed with a compound of cues that predict an outcome, the agent searches
and samples one of the cues according to their current value (ν) and sali-
ence (α). In this example, the compound AB is presented and an additional
cue X is perceived for the compound. For illustrative purposes, we assume
that cue A has been sampled in this trial (colored in red). Once the agent
samples the cue, it updates its value according to a prediction error rule.
Only the value of the sampled cue (A, in this example) is updated for
the following trial.

A

B C

Figure 7. (A) Simulations of the subsamplingmodel for different summa-
tion designs. The left panel shows the results obtained by Rescorla and
Coldwell (1995) in pigeon autoshaping. The right panel shows the simula-
tions of the model assuming that the saliencies of A and B are equal. (B)
Simulations of a subsampling model for a summation experiment where
the salience of B is assumed to be higher than that of A, but B predicts a
lower outcome value. (C) Simulations of a subsampling model for a sum-
mation experiment where the salience of B was higher than that of A but
the outcome value predicted by B is higher than the value predicted by A.
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critical variable driving summation, we should have observed
higher summation in groups extra and extra2, where A and B are
dissimilar, than in group intra (Fig. 10, left panel). If, in addition,
similarity between the targets A and B and nontarget cues X and
Y influences summation, we should have obtained higher summa-
tion in group extra2, where those cues are dissimilar, than in group
extra, and higher summation in group extra than in group intra (Fig.
10; right panel).

To confirm these predictions through a more formal associat-
ive analysis, we performed simulations with one of the most flexi-
ble of associative models, the replaced elements model (REM)
proposed by Wagner and his colleagues (Brandon et al. 2000;
Wagner 2008). In short, REM assumes that the presentation of a
given cue activates two types of elements: context-independent
and context-dependent elements. The context-independent ele-
ments are activated whenever the target cue is presented indepen-
dent of whether other cues are present or absent. In turn,
context-dependent elements, apart from the cue they represent,
are activated only when other specific cues are present or absent.
In the case of our experiments, for instance, whenABX is presented
at test, context-independent elements ai, bi, and xi and context-
dependent elements ax and bx contribute to the prediction. At
the same time, some predictive value is also lost when ABX is pre-
sented due to the replacement of several excitatory elements by as-
sociatively neutral elements. The overall result, of course, will
depend on the assumptions made about the replacement between
components, but the predominant result in the REM is negative
summation. Indeed, we could not reproduce the results of experi-
ment 1 even when testing a wide range of values in its parametric
space (see the Appendix at https://osf.io/apd34 for results of those
simulations; see Brandon et al. 2000; Wagner 2008; Vogel et al.
2017 for theoretical details).

In experiments 2a and 2b we obtained evidence for the sub-
sampling hypothesis by showing that the majority of participants
rated a compoundABX/ABY equal to the value of one of the cues in

the compound. Again, associative models cannot explain these re-
sults, as they predict lower responding to ABX/ABY in groups intra2
than in group intra; in the former group, the asympotic values for
AXY and BXY are 8 and 10, respectively, whereas these values are
both 10 for group intra. Moreover, when we swapped the outcome
values predicted by AXY and BXY between experiments 2a and 2b,
participants followed the value of one of the stimuli, BXY, presum-
ably due to it being more salient.

Another interpretation for these results can bemade by exam-
ining further potential visual mechanisms. One possibility is con-
sidering a perceptual grouping hypothesis,4 depicted in the left
panel of Figure 11. As already described, the cues in our design var-
ied in shape only and were all composed of eight circles connected
by lines. Given that the three different shapes in a compoundwere
connected with one another via the central circle, perceptual
grouping of cues of the same color may result in them being per-
ceived and encoded as a single configuration (Palmer 1999). In
Figure 11, one can see that for group intra, this would result in en-
coding of a single three-cue group during training, and encoding of
a novel but similar three-cue group during testing. For this group,
therefore, one would expect a rating for the testing compound of
≤10, with the actual value depending onhowmuch learning about
the training group one assumes generalizes to the testing group.

The predictions are more complex for groups extra and extra2.
In group extra, during training, people should parse the compound
into two groups: one composed of a target cue and a nontarget cue,
both being relevant for outcome prediction (solid orange ellipse in
Fig. 11), and one composed of a single nontarget cue, being irrele-
vant for outcome prediction (dotted orange circle in Fig. 11). The
testing compound would be parsed again into two groups: one be-
ing a trained relevant group of two cues, associated with 10 points
of allergy (solid orange ellipse in Fig. 11), and one being a novel
group composed of a single target cue (blue circle in Fig. 11). For
this group, one would expect a rating for the testing compound
of >10, with the actual value depending on how much learning
about the two-cue training group one assumes generalizes to the
single-cue testing group. Finally, in group extra2, during training,
people should parse the compound into two groups: one com-
posed of the target cue, being relevant for outcome prediction (sol-
id orange circle in Fig. 11), and one composed of the two nontarget
cues, being irrelevant for outcome prediction (dotted orange ellipse
in Fig. 11). The testing compound would be parsed into three
groups of single cues, two of them being trained groups associated
with 10 points of allergy. For this group, one would expect a rating
for the testing compound of ≈20. In sum, the predictions of this
perceptual grouping hypothesis are that ratings for the ABX/ABY
testing compounds should be extra2≈20> extra> intra≤10. Thus,
the perceptual grouping hypothesis is more than superficially sim-
ilar to configural theory, as itmakes the same rank predictions as all
versions of the REM implementing some configural processing (see
the Appendix at https://osf.io/apd34).

In the last section of this article, we present a computational
implementation of the subsampling hypothesis. Through simula-
tion,we showhow thismodel is able to capture not only the data of
groups intra and extra, but also a wider range of previous phenom-
ena that are usually attributed to configural processing of stimuli in
the animal literature. In contrast to these models, however, we ob-
tained these results by taking a view that relies on objective prop-
erties of stimuli—some of which are absent when stimuli are
presented in isolation—rather than on internal representations,
as is usually assumed in associative learning models. This makes

Figure 8. Simulations of a subsampling model for a differential summa-
tion design. (Left panel) Results obtained by Pearce et al. (1997) in pigeon
autoshaping. The bars show the responding to the compound ABC after
training with the single cues A, B, and C or after training with the com-
pounds AB, BC, and AC. (Right panel) Simulations of the subsampling
model for the same design.

4We thank Harald Lachnit for mentioning this possibility.
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the subsampling approach more parsimonious than current theo-
ries based on internal stimulus representations.

The subsampling model outlined here does not contain a
mechanism for sampling multiple cues in a compound and is
therefore notmeant to capture summation data.We have assumed
that traditional elemental models, such as the Rescorla–Wagner
model (Rescorla and Wagner 1972), can explain behavior under
conditions that foster parallel processing during visual search
(i.e., clearly identifiable component cues). A simple extension
could be formulated to formalize a mechanism that chooses be-
tween subsampling and full sampling strategies. As a first approxi-
mation, the mechanism could be implemented in an all-or-none
fashion. For example, the agent could arbitrate between strategies
following a rule such as

M(d) =
msub if d . D

mfull if d ≤ D

⎧⎨
⎩ , (4)

where d is a variable that determines howdifficult it is to parse com-
ponents—which should be a direct function of the similarity be-
tween them—and D is a threshold that varies across individuals
and will determine whether subsampling or full sampling is
deployed.

Regardless of the possible extensions of a subsampling ap-
proach, our work provides empirical and computational evidence
suggesting that under conditions in which components in a com-
pound are difficult to parse and identify, participants may engage
in an inefficient search process by which they only sample a subset
of the compound. This subsampling approach can explain the em-
pirical evidence presentedhere better than currentmodels of learn-
ing, and a simple formalization of its principles can also capture
previous data from the animal literature usually interpreted as sup-
porting configural processing. We believe this interpretation is

testable and important, and should be considered as a plausible al-
ternative hypothesis in the literature on learning and
generalization.

Materials and Methods

Participants were tested using desktop Windows computers run-
ning Psychopy (version 1.75 for experiment 1; version 1.82.4 for
experiments 2 and 3) (Peirce 2007). Responses were recorded
from standard PC keyboards.

Statistical analysis
Statistical analyses were performed using RStudio and SPSS 27.0.
For all of the preplanned comparisons, we calculated a Welsh
t-test and included Cohen’s D, along with a 95% confidence inter-
val on this estimate, as a measure of effect size. When reporting in-
teractions between factors, we computed η2p. Following Steiger
(2004), we report a 90% confidence interval on this estimate. The
reliability of the results was contrasted against the usual criterion
of α=0.05.When a null effect was expected, a Bayes Factor in favor
of the null (BF01) is reported.

Experiment 1

Participants
Eighty-six undergraduate students from Florida International
University participated in experiment 1. Participants did not
have previous experience with the experimental procedure and
were tested simultaneously and in the same room. The
Institutional Review Board of Florida International University ap-
proved all of the studies in this article (IRB-15-0460). Written in-
formed consent was obtained from all participants. They were
given course credit for their participation.

Participants were randomly assigned to one of three groups:
intra (nintra=27), extra (nextra=28), and extra2 (nextra2= 31). In all of
the studies in this article, we determined our exclusion criteria be-
fore data collection by following the criteria used in Pérez et al.
(2018). Participants that did not give on average a rating between
seven and 13 points of allergy to cues that predicted allergy and be-
tween 0 and three points of allergy to cues that did not predict al-
lergy were left out of the analysis. The final number of participants
in experiment 1 was nintra=18, nextra=13, and nextra2=27.

Procedure
Before the training phase, participants were presented with the fol-
lowing instructions:

In this experiment, we will ask you to imagine that you are an
allergist; that is, a medical specialist whose work is to discover
the causes of allergic reactions in people. A new patient, Mr.
X, visits you asking for your help. Mr. X has allergic reactions
to some drugs, but not to others. In an attempt to discover
which drugs cause allergic reactions to Mr. X, you apply the
drug on Mr. X’s skin and observe the magnitude of the allergic
reaction. On each trial, the computer will show you a shape rep-
resenting the drug that has been applied to Mr. X’s skin. You
will be asked to predict the magnitude of the allergic reaction
that Mr. X will have to the drug. Enter your prediction using
the rating scale that will be shown at the center of the screen.
This scale ranges from 0 to 35 points, where 0 points means
that the drug produces no allergic reaction and 35 pointsmeans
that the allergic reaction is of maximum intensity. You can ad-
just your prediction as many times as you want and take as long
as you like to enter the prediction. Once you feel satisfied with
your prediction, you must confirm it by either pressing the
“Enter” key on your keyboard or clicking on the gray button be-
low the rating scale. You will receive feedback about the actual

Figure 9. Simulations of a subsampling model for experiment 3 of
Pearce and Wilson (1991). The experiment comprises a first phase
where A is reinforced and the compound AB is not (A+, AB−). In the
second phase, B is reinforced in isolation. The left panel shows the original
data obtained by these investigators. Simulations of the subsampling
model are shown in the right panel.
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magnitude of the allergic reaction. At first, you will need to
guess the correct answer, but your predictions should get
more accurate as the experiment progresses.

Participants were presented with the following instructions before
the test phase:

Now you will have to make a final evaluation of the drugs that
produce allergic reactions in Mr. X. The computer will show
you single drugs or combinations of drugs and, as before, you
must enter your prediction using a scale that ranges from 0
to 35 points, where 0 points means that the drug produces
no allergic reaction and 35 points means that the drug produc-
es an allergic reaction of maximum intensity. Use intermediate
values to indicate different degrees of allergic reaction between
no allergic reaction andmaximum allergic reaction. To confirm
your choice, press “Enter” on your keyboard or click the gray
button that will be shown below the rating scale. You can
change your decision as many times as you want before con-
firming it.

Groups differed in the similarity between cues in the display (see
Fig. 2). Each stimulus was created from three different cues that
“branched out” from a central point. Among these branches,
only one of them represented the target cue associated with either
allergy or no allergy during training (A, B, C, or D). The other two
branches were nontarget cues that could not predict the presence
or absence of allergy (X and Y). During the test, the compound
AB was comprised of two target branches together with an addi-
tional nontarget cue (ABX or ABY). In group intra, all these
“branches” were of the same color (black), but differed in shape.
In group extra, A and B differed in color (gray and black), but
they shared color with the nontarget cues (X and Y, one gray and
one black). In group extra2, the target cues were the same as in
group extra, but now the nontarget cues had a distinctive color as
well. In all groups, A and B, which predicted allergy, shared color
with cues C and D, which predicted no allergy. Thus, all partici-
pants, regardless of group, had to attend to shape; color was irrele-
vant to solve the discrimination.

Experiment 2a

Participants
Seventy-five undergraduate students from Florida Interna-
tional University were randomly assigned to one of two groups
(nintra=40 or nintra2=35) and were compensated with course credit
for their participation. The exclusion criteria were the same as those
of experiment 1, except that the admittance interval for the mean
rating to A and B in group intra2was set to [5–11]. The final number
of participants per group was nintra=39 and nintra2=33.

Procedure
The procedure was the same as described for group intra of experi-
ment 1, with only one exception: In group intra2, stimulus BXY
was associated with eight points of allergy during training (see
Fig. 5A).

Experiment 2b

Participants
Eighty undergraduate students from Florida International
University were randomly assigned to one of two groups (nintra = 42
or nintra2=38) and were tested under the same conditions of exper-
iment 2a. The final number of participants per group was nintra= 24
and nintra2 =33.

Procedure
The procedure was the same as in experiment 2, except that the
outcome values for A and B were interchanged in group intra2. In

Figure 10. Expectations for experiment 1, based on the prediction from
associative learning theory of an effect of similarity on summation. (Left
panel) Expected results when similarity of only the target cues A and B in-
fluences summation. (Right panel) Expected results when similarity of all
cues (i.e., nontarget cues as well as target cues) influences summation.

Figure 11. Perceptual grouping hypothesis for experiment 1 (see the
text for details).
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this experiment, the outcome assigned to BXY was 10, while a val-
ue of 8 was assigned to AXY.

Data deposition
The data and materials for all experiments are available at https://
osf.io/xqnpk.
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