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Abstract: A display that contains hierarchically nested levels of order requires 11 
the perceiver to selectively attend to one of the levels. We investigate the degree 12 
to which such selective attention is sustained by a soft-assembled emergent 13 
coordinative process, one that does not require designated executive control. In 14 
the case of emergent soft-assembly, performance from one trial to the next 15 
should show characteristic interdependence, visible in the fractal structure of 16 
reaction time. To test this hypothesis, we asked participants across three 17 
experiments to decide whether two displays matched in a certain way (e.g., in a 18 
local element). In order to gauge this coordinative process, task constraints 19 
were experimentally manipulated (e.g., familiarity, predictability, and task 20 
instruction). Obtained reaction-time data were subjected to a spectral analysis 21 
to measure the degree of interdependence among trials. As predicted, results 22 
show correlated structure across trials, significantly different from what would 23 
be predicted by an independent-process view selective attention. Results also 24 
show that the obtained spectral scaling exponents track the degree of coupling 25 
in the task as a function of the degree of task constraints. Findings are discussed 26 
in terms of the relative organism-environment coupling to sustain an adaptive 27 
behavior. 28 
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FRACTAL COORDINATION IN ADULTS’ ATTENTION TO 31 
HIERARCHICAL VISUAL PATTERNS 32 

A prevalent feature of our visual context is its nested structure: Details 33 
of individual elements are nested within overarching patterns, which themselves 34 
are part of a global Gestalt, and so on. Take a child’s room, for example. One 35 
can zoom in, to differentiate among small units (say the dirty spot on Elmo’s 36 
fur); and one could zoom out to detect large patterns of Gestalt (say the thematic 37 
arrangements among the toy soldiers and the stuffed animals). To derive 38 
meaning, one needs to attend to a particular level of order along the hierarchy of 39 
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orders, while ignoring variation that falls outside of that chosen level. What are 40 
the underlying processes that make such attentional processes possible? To use 41 
the example mentioned above: how can one perceive a whole scene in a child’s 42 
room without getting distracted by – and yet still perceiving – a patch of dirt on 43 
an individual toy?  44 

Postulating an a-priori preference for a certain level of order would pro-45 
vide part of the answer. There is indeed evidence of a so-called ‘global prece-46 
dence’, a tendency to take into account a global aspect of a display, even after 47 
being instructed to ignore it (e.g., Blanca, Luna, López-Montiel, Zalabardo & 48 
Rando, 2002; Dukette & Stiles, 1996; 2001; Enns & Girgus, 1985; Hughes, 49 
Layton, Baird, & Lester, 1984; Kimchi, 1998; 2009; Kimchi, Hadad, Behrmann, 50 
& Palmer, 2005; Navon, 1977; Sanders & Poeppel, 2007). However, global pre-51 
cedence cannot account for the full story. Take for example the finding that glo-52 
bal precedence is weakened (or missing altogether) when the display consists of 53 
only a few large elements (e.g., Burack, Enns, Iarocci, & Randolph, 2000; 54 
Dukette & Stiles, 1996; 2001; Enns & Girgus, 1985; Kimchi, 1990; Kimchi et 55 
al., 2005; Martin, 1979; Scherf, Behrmann, Kimchi, & Luna, 2009). Further-56 
more, there are reports that local elements can be detected more easily when 57 
they are part of a global order than when the global order is omitted (Dukette & 58 
Stiles, 1996; 2001; Quinn, Burke, & Rush, 1993). Such interactions among 59 
levels of orders are not anticipated by a theory of specialized attentional process-60 
es (see also Deutsch, & Deutsch, 1963; Kahneman, 1973; Treisman, 1960). 61 

The idea pursued here is that attention to hierarchical displays is 62 
controlled by a soft-assembled coupling between multiple processes, emergent 63 
in the actor-task system (e.g., Kelso, 1995; Smith, 2005; Riley & Turvey, 2002; 64 
Turvey, 1990, 2007). The factors that contribute to soft-assembly reside neither 65 
exclusively in the actor’s competences or biases, nor in the task’s statistical con-66 
tingencies. Instead, they combine a multitude of neurophysiological, perceptual, 67 
and motor sub-systems that interface with the details of the task. Soft-assembly 68 
implies the coming together of cooperative and competing factors, yielding a 69 
super-ordinate whole that sustains an adaptive task-actor coupling across trials. 70 
The resulting coupling is both stable enough to ignore perturbations and, at the 71 
same time, flexible enough to take into account seemingly irrelevant information 72 
(for a discussion see Kello & Van Orden, 2009).  73 

The characteristics of emergent soft-assembled behavior are in line 74 
with the context effects of the global precedence, including the effects of age, 75 
experience, gender, and task specifics documented before (e.g., Kimchi, 76 
Amishav, & Sulitzeanu-Kenan, 2009). More importantly, soft-assembly can 77 
explain the dual nature of attention: its selective focus on an isolated level of 78 
order (to the expense of other levels of order), and its integrative and distributed 79 
property across multiple levels of order.  80 

The theory of emergent soft-assembly has been applied to motor 81 
performance, perception, cognition, and social reasoning (for reviews, see 82 
Goldfield, 1991; Smith, 2005; Smith & Breazeal, 2007; Turvey, 2007). 83 
However, it has not been explored in the area of attention (for a review of 84 
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of it: The original trial series (Fig. 1A) is decomposed into a series of sinusoidal 128 
functions that vary in their oscillation frequency and power (Fig. 1B). Each 129 
sinusoidal function is thought to represent a process or aspect of behavior that 130 
varies on a unique time scale. To determine the degree of coordination among 131 
these time scales, each extracted sinusoidal function is then depicted on a 132 
double-logarithmic frequency-power scatter plot (Fig. 1C). The relative size of 133 
the slope of the resulting regression line (i.e., the scaling exponent of the fractal 134 
analysis) quantifies the relative strength of the coordination among time scales 135 
(see also Holden, 2005; Press et al., 1992).  136 

A variety of motor and perceptual task have yielded above-zero scaling 137 
exponents, include walking (Kiefer, Riley, Shockley, Villard, & Van Orden, 138 
2009), standing (Duarte & Zatsiorsky, 2000), tapping (Coey, Hassebrock, Kloos, 139 
& Richardson, 2013; Lemoine, Torre, & Delignières, 2006), tracing (Wijnants, 140 
Bosman, Hasselman, Cox, & Van Orden, 2009), generating pressure (Athreya, 141 
Van Orden, & Riley, 2012), and producing learned rhythms (Madison, 2004). 142 
Such patterns of variability were also found in cognitive tasks, including 143 
speeded classification (Clayton & Frey, 1997; Ward, 2002), the perception of 144 
reversible figures (Aks & Sprott, 2003), visual search (Aks, Zelinsky, & Sprott, 145 
2002; McIlhagga, 2008), speech production (Holden & Rajaraman, 2012), time 146 
estimation (e.g., Gilden, 2001; Kuznetsov & Wallot, 2011), and mental rotation 147 
(Gilden, Thornton, & Mallon, 1995).  148 

Yet, the interpretation of fractal patterns has seen some debate, conten-149 
tious at times (cf., Gilden, 2001; 2009; Ihlen & Vereijken, 2010; Kelty-Stephen 150 
& Mirman, 2013; Stephen & Mirman, 2010). At one extreme, there is the claim 151 
that fractality in psychological tasks is nothing more than a statement in alge-152 
braic calculus, a methodological artifact of some sort with little to say about the 153 
underlying process (Bogartz & Staub, 2012; Wagenmakers, Farrell, & Ratcliff, 154 
2004; 2005). At the other extreme, non-zero fractality is seen as evidence of a 155 
complex system being poised at a perfect balance of competing tendencies that 156 
combine randomness and order adaptively (Bak, 1996; Bak, Tang, & 157 
Wiesenfeld, 1987). Between these two extremes, there are various claims about 158 
the meaning of fractality (cf., Dale, 2008), ranging from relatively conservative 159 
views (e.g., fractality demonstrating interdependence of trials) to relatively radi-160 
cal reviews (e.g., fractality demonstrating self-organized criticality).  161 

In our view, existing evidence supports at least an intermediate stance 162 
between the most conservative and most radical interpretation of above-zero 163 
fractal exponents, namely that fractal analyses provide a way of gauging the 164 
coordination among processes that operate on different time scales. This stance 165 
is motivated by findings that the relative size of fractal exponents varies with the 166 
degree to which adaptive coupling is achieved. For example, the scaling expon-167 
ent was found to increase as participants gained more practice in a motor-aiming 168 
task (Wijnants, Bosman, Hasselman, Cox, & Van Orden, 2009). And it increase-169 
ed when participants could anticipate the next trial in a speeded-decision task 170 
(Kello, Beltz, Holden, & Van Orden, 2007). In contrast, the scaling exponent 171 
decreased when memory requirements were ramped up in a classification task 172 
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(Clayton & Frey, 1997; Ward, 2002), or when binocular disparity was increased 173 
in a reversible-figure perceptual task (Aks & Sprott, 2003). A relative decrease 174 
was also found when trials were separated, either by feedback (Athreya, Van 175 
Orden, & Riley, 2012; Kuznetsov & Wallot, 2011) or by a variable amount of 176 
time (Holden, Choi, Amazeen, & Van Orden, 2011). In each of these cases, the 177 
modifications interrupted sustained actor-task coupling.  178 

Finding that the relative size of the fractal exponent tracks the degree of 179 
coupling in the actor-task system is difficult to explain under a view that fractals 180 
are mathematical epiphenomena. Instead, fractal exponents appear to measure 181 
the interdependence of factors in a soft-assembled system (for discussions, see 182 
Holden et al., 2011; Riley & Turvey, 2002). Building on these insights, we 183 
devised a task that allowed us to determine the fractality of sustained attention. 184 
Specifically, we created hierarchical displays, each consisting of three unique 185 
elements that gave rise to a global contour. The task was to compare two of 186 
these displays, either in one or both levels of order. Trials differed in whether 187 
there was a match between the two displays or not. Reaction times of decisions 188 
across a large number of trials were subjected to a spectral analysis, the 189 
dependent measure being the size of a person’s fractal scaling exponent.  190 

We also manipulated a set of factors that might affect attention to a 191 
nested level of order. The first factor pertained to the instructed focus of 192 
attention. In Experiment 1, participants were instructed to attend to the global 193 
shape of the displays. Given the documented global precedence, we expected 194 
this task to yield a strong task-actor coupling, and thus to yield highest fractal 195 
exponents. In contrast, participants in Experiment 2 had to decide whether two 196 
displays shared an element. This task required participants to compare elements 197 
individually, likely to result in weaker task-actor coupling. Thus we expected 198 
lower fractal exponents in Experiment 2 than Experiment 1. In Experiment 3, we 199 
sought to further perturb the task-actor coupling, this time by asking participants 200 
to compare displays in both their global shape and their individual elements. 201 
This task was expected to result in lowest fractal exponents.  202 

The second factor pertained to whether the elements readily gave rise to 203 
the global contour or not. Elements were either familiar letters printed on a 204 
salient background, ones that easily combined into the global contour. Or they 205 
were unfamiliar line drawings that needed to be integrated to support the 206 
perception of the global shape. When the task was to attend to the global shapes, 207 
we predicted higher fractal exponents with familiar elements (letters on salient 208 
background) than with unfamiliar elements (line drawings on white 209 
background). This difference was expected to disappear when no integration 210 
was required, namely when the task was to attend to individual elements.  211 

Finally, the third factor pertained to the order in which different types 212 
of trials were presented to participants. Types of trials were presented either 213 
randomly or in a prescribed order that allowed participants to anticipate the next 214 
trial, at least to some degree. The random-order presentation mode most likely 215 
provides information about the baseline coupling that is necessary to perform in 216 
the task. In contrast, in the predetermined-order presentation mode, when some 217 
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anticipatory learning is possible, the task-actor coupling was likely to be 218 
strengthened (see also Kello et al., 2007). We therefore predicted higher fractal 219 
exponent when trials appear in a predetermined order than when they appear 220 
randomly.  221 

EXPERIMENT 1 222 

Participants were asked to compare displays in their global shape, 223 
derived from the contour of three individual elements in the display. A 2-by-2 224 
between-group factorial design crossed element familiarity (familiar vs. 225 
unfamiliar elements) with trial order (random vs. predetermined order of trials).  226 

Method 227 
Participants 228 

Participants in all three experiments were native English speakers who 229 
had no self-reported history of vision impairments. They received course credit 230 
in exchange for their participation. For this experiment, participants were 58 231 
adults between 18 and 42 years of age (35 women, 23 men; M = 21.7 years, SD 232 
= 4.5 years), randomly assigned to one of the four experimental conditions. The 233 
number of participants in each condition ranged between 14 and 16, and age was 234 
about equally distributed across cells. Five additional participants were tested, 235 
but not included in the final sample, due to equipment problems (n = 2), or 236 
because they did not meet the 75% accuracy criterion (n = 3, see Procedure). 237 

Materials 238 

Displays were created for which the contour of elements combined into 239 
global shapes. Elements were either lower-case letters printed on a background 240 
(see top row of Fig. 2), or unfamiliar line drawings printed without background 241 
(referred to as ‘characters’, see bottom row of Fig. 2). Four of the letters (c, s, x, 242 
z) had a square contour, another four other letters (p, q, g, y) had a low-rectangle 243 
contour (i.e., a rectangle that reaches below the bottom line of the square), and 244 
the remaining four letters (b, h, f, l) had a high-rectangle contour (i.e. a rectangle 245 
that reaches above the top line of the square). For characters, various types of 246 
lines combined into quadrilaterals. They gave rise to the same contour as the 247 
letters (i.e., square, low-hanging rectangle, or high-hanging rectangle), but 248 
without a background to highlight the contour.  249 

Three elements (either letters or characters) were grouped into a 250 
display, with the restriction that no element was repeated within a display. 251 
Depending on the contour of an element, 27 unique global shapes were possible. 252 
We used 24 of these shapes, omitting the three shapes in which all three 253 
elements shared the same contour. Global shapes that contained two letters of 254 
the same contour were used in 48 unique displays, and global shapes that 255 
contained each of the three contours were used in 64 unique displays.  256 

During a trial, two displays were presented next to each other. They 257 
could match in an element (i.e., ‘element-match’ trials, Fig. 2A-B), they could 258 
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Procedure 299 

Participants were tested individually in the laboratory, using Superlab 300 
Pro (Version 2.0) to administer the experiment on a PC laptop (Intel Core Duo 301 
processor of 2.40 GHz). Instructions and training were identical across 302 
conditions, the only difference pertaining to the stimuli and the order in which 303 
they were presented. During training, participants were shown an example of 304 
each type of trial, and a detailed explanation was given: For the shape-match 305 
trial, participants learned that the two displays did not share a letter/character, 306 
but that they had the same overall shape (the experimenter pointed to the shapes 307 
on the computer screen). Care was taken to clarify that mirror-image shapes 308 
were considered no-match. For the element-match trials, participants learned 309 
that the displays shared a letter/character, located in the same relative position of 310 
the display. Finally, for the no-match trial, participants learned that the two 311 
displays did not have the same shape, nor did they share a letter/character, and 312 
therefore did not match. 313 

The specific task was to decide if the two displays match in global 314 
shape. Participants were given a numeric keypad for with the keys 1 and 2 were 315 
marked with the letters Y and N (to correspond to “Yes” and “No” response 316 
options, respectively). Using their dominant hand, participants were instructed to 317 
press “Yes” when the displays matched in shape, and “No” otherwise. Feedback 318 
training consisted of nine trials, three of each type, administered in a random 319 
order. Incorrect responses were clarified. Participants were then given the 320 
following instruction: “The experiment will last about 60 minutes. Make sure to 321 
be as quick and precise as possible.” The experimenter then left the room, and 322 
the participants completed the task alone. Participants had to perform correctly 323 
on at least 75% of the trials to be included in the sample. 324 

Results & Discussion 325 

To get at the main objective of the study, namely to explore the task-326 
actor coupling sustained across trials, we describe the results of the spectral 327 
analyses of reaction-time data in detail. Performance in terms of reaction-time 328 
data and accuracy are provided in Fig. 3: Accuracy (Fig. 3A) was affected by (i) 329 
trial type [F(2, 108) = 15.96, p < 0.001; 2

p = 0.23; better performance on no-330 
match trials (M = 0.972) than either shape-match (M = 0.947) or element-match 331 
trials (M = 0.934), p < 0.01], and (ii) trial-type-order interaction [F (2, 108) = 332 
4.01, p < 0.02; 2

p = 0.07; better performance on shape-match than element-333 
match trials in the predetermined-order condition, but not in the random-order 334 
condition]. Reaction time (Fig. 3B) was affected by (i) familiarity [F(1, 54) = 335 
11.62, p < 0.001, 2

p = 0.18; shorter RT in the familiar-element (M = 1.34 s) 336 
than in unfamiliar-element (M = 1.71s) condition], and (ii) familiarity-order 337 
interaction [F(1, 54) = 2.44, p < 0.10, 2

p = 0.04, the effect of familiarity was 338 
present only in the predetermined-order (MFamiliar = 1.19s; MUnfamiliar = 1.73s), not 339 
the random-order (MFamiliar = 1.49s; MUnfamiliar = 1.69s) condition]. No other 340 
interactions or main effects were significant. 341 
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scaling exponents that were higher than the respective average scaling exponents 386 
obtained for the reshuffled trial series (when sequential dependence of trials was 387 
eliminated), paired-sample ts ≥ 3.78, ps ≤ 0.001. The average scaling exponents 388 
of the re-shuffled trial series were not different from zero, p > 0.99 (they ranged 389 
between 0.005 and 0.03).  390 

To what extent did our experimental manipulation affect the size of the 391 
fractal exponent? For this and all subsequence experiments, we conducted a 2-392 
by-2 between-subjects ANOVA, with presentation order and element familiarity 393 
as the between-group factors. Note that traditional statistical analyses are 394 
common to compare means of fractal exponents across different condition. To 395 
ensure that our data meet the necessary distribution requirements, we ran the 396 
Kolmogorov-Smirnov Z test for each condition (see Table 2). Finding non-397 
significant results, ps > 0.58, implies that there is no deviation from normality in 398 
our data (see Guastello, 2011, for a full discussion in fractal distributions in the 399 
context of statistical analyses).  400 

 401 
Table 2. Descriptive statistics of fractal exponents for Experiments 1, 2, and 3. 402 

  Conditions 
  Familiar Unfamiliar 
  Random Predetermined Random Predetermined 
Exp. 1: Decisions centered on shapes 
 Mean 0.205 0.303 0.172 0.201 
 SE 0.023 0.022 0.023 0.023 
 ZK-S 0.405 0.429 0.387 0.533 
 p 0.99 0.99 0.99 0.94 
Exp. 2: Decisions centered on elements 
 Mean 0.152 0.275 0.162 0.236 
 SE 0.023 0.024 0.023 0.023 
 ZK-S 0.605 0.727 0.503 0.588 
 p 0.86 0.67 0.96 0.88 
Exp. 3: Decisions centered on both shapes and elements 
 Mean 0.115 0.223 0.119 0.161 
 SE 0.022 0.020 0.021 0.022 
 ZK-S 0.524 0.632 0.625 0.770 
 p 0.95 0.82 0.83 0.59 

Note: A Kolmogorov-Smirnov Z test (ZK-S) was implemented to assess the 403 
degree to which the distribution of the fractal scaling exponents falls within a 404 
normal distribution. 405 

As predicted, results of this experiment revealed a significant effect of 406 
trial order, F(1, 54) = 9.50, p < 0.01, 2

p = 0.15, with larger scaling exponents in 407 
the predetermined-order condition (M = 0.26, SD = 0.10) than in the random-408 
order condition (M = 0.19, SD = 0.06). There was also an effect of element 409 
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familiarity, F(1, 54) = 10.75, p < 0.001, 2
p = 0.17, with a larger scaling 410 

exponents in the familiar-elements condition (M = 0.26, SD = 0.09) than in the 411 
unfamiliar-elements condition (M = 0.19, SD = 0.08). Interestingly, following up 412 
on a marginally reliable familiarity-predictability interaction, F(1, 54) = 2.80, p 413 
= 0.10, the effect of familiarity was apparent in the predetermined-order 414 
condition (MFamiliar = 0.30, SD = 0.09; MUnfamiliar = 0.20, SD = 0.09), F(1, 54) = 415 
12.66, p < 0.001, 2

p = 0.19, but not in the random-order condition (MFamiliar = 416 
0.21, SD = 0.05; MUnfamiliar = 0.17, SD = 0.07), p > 0.26. This suggests that the 417 
coupling support provided by features of the elements is qualified by the 418 
predictability of trials.  419 

As a way of checking the robustness of our spectral data, we generated 420 
cumulative spectral density plots (using the same 127-frequency window that 421 
was used for the spectral plots of individual participants). Figure 4 shows the 422 
plots, each amplitude representing the average amplitude of a specific 423 
frequency, across participants in a condition.  424 

Consider first the white circles in Fig. 4: they represent the data series 425 
of the random-order condition, either in their original sequence (Fig. 4A, 426 
collapsed across element familiarity), or in a sequence resorted to match the 427 
predetermined order of trials (Fig. 4B, familiar-element condition; Fig. 4C, 428 
unfamiliar-element condition). Confirming the results with individual 429 
participants, the slope of the original trial series is visibly higher (M = 0.22) than 430 
the slopes of the resorted trials series (M = 0.001), F(1, 54) = 508.87, p < 0.001, 431 
2

p = 0.90. 432 
Now consider the grey circles in Figure 4: they represent the data series 433 

of the pre-determined-order condition (Fig. 4B, familiar-element condition; Fig. 434 
4C, unfamiliar-element condition). The spectral slopes of these plots are again 435 
higher than the slopes of resorted data. Importantly though, the cumulative plots 436 
in the predetermined-order conditions reveal several spikes in the high-437 
frequency area. Similar spikes have been identified before, namely in tasks that 438 
used a rhythmic structure of stimuli (Voss & Clarke, 1975) or allow for 439 
predictability of the subsequent trial (Holden, 2010; Kello et al., 2007). In each 440 
case, the spikes appear to track the frequency of repeating patterns.  441 

To investigate whether the same is the case here, we created the 442 
spectral plot of a dummy-coded trial series (dashed line in Fig. 4B-C). In the 443 
dummy-coded trial series, a shape-match trial was coded as ‘-1’, an element-444 
match trial was coded as ‘1’, and a no-match trial was coded as ‘0’. As expected, 445 
the locations of spikes of the original data matched with the location of spikes of 446 
the dummy-coded trial series, appearing at frequencies of about -1.18 Log10Hz, -447 
1.0 Log10Hz, -0.7 Log10Hz, and -0.54 Log10Hz. Using a reverse process of 448 
deriving the number of consecutive trials from the corresponding frequency [x = 449 
(10f(x))-1 = 1/10f(x)], we found that -1.18 Log10Hz frequency corresponds to a 15-450 
trial wide sinusoidal function [x = 1/(10-1.18) = 1/0.667 = 15.13  15], the -1.0 451 
Log10Hz frequency corresponds to a 10-trial wide sinusoidal function, the -0.7 452 
Log10Hz frequency corresponds to the 5-trial wide sinusoidal function, and the -453 
0.54 Log10Hz frequency corresponds to the 3-trial pattern.  454 
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the fastest frequencies is likely to result from harmonics of the sub-patterns that 490 
exist within the longer patterns. Confirming this intuition, the spikes from the 491 
data the predetermined-order condition track those of the random-order condi-492 
tion, once these latter data were sorted to match the predetermined order of 493 
trials.  494 

To better understand the nature of the spikes, we compared the ampli-495 
tudes of the three main spikes (-1.18, -1.0, and -0.7 Log10Hz) across different 496 
cumulative plots (top grey circles vs. top white circles in Fig. 4C-B). Table 3 497 
shows the average amplitudes of spikes (and their standard deviations), 498 
separated by trial series (predetermined order, re-sorted random order). Given 499 
that there was no difference between familiar- and unfamiliar-element 500 
conditions, ps > 0.42, we collapsed amplitudes across element familiarity. A 501 
significant difference was found between the original and the resorted data for 502 
the -1.0 Log10Hz spike, t(36) = 2.99, p < 0.01. Though this difference was not 503 
consistent across all spikes, it provides initial support that the spikes provide 504 
information that goes beyond a mere artifact of trial ordering. How do these 505 
findings hold up when the participant is instructed to focus on local elements?  506 
 507 

Table 3. Average Maximum Amplitude of Spikes in the Predetermined-Order and 508 
the Re-sorted Random-Order Condition. 509 

 f(x) ≈ -1.18;  x ≈ 15 f(x) ≈ -1.0;  x ≈ 10 f(x) ≈ -0.7;  x ≈ 5 
 

Pre-
determined 

Re-
sorted 

Random 
Pre-

determined 

Re-
sorted 

Random 
Pre-

determined 

Re-
sorted 

Random 

Exp. 1: Decisions centered on shapes 
Familiar 0.46  

(0.21) 
0.38  

(0.20) 
0.52  

(0.18) 
0.39  

(0.16) 
0.40  

(0.18) 
0.36  

(0.13) 
Unfamiliar 0.44  

(0.24) 
0.38  

(0.22) 
0.47  

(0.17) 
0.34  

(0.16) 
0.32  

(0.19) 
0.39  

(0.15) 
Collapsed +0.45  

(0.16) 
0.38  

(0.19) 
0.50*  

(0.20) 
0.37* 

(0.16) 

+0.36  
(0.16) 

0.38  
(0.12) 

Exp. 2: Decisions centered on elements 
 +0.64  

(0.17) 
0.64  

(0.26) 
0.46  

(0.22) 
0.47  

(0.18) 

+0.46  
(0.19) 

0.45  
(0.16) 

Exp. 3: Decisions centered on both shapes and elements 
 +0.80*  

(0.30) 
0.62* 

(0.23) 
0.43  

(0.22) 
0.43  

(0.19) 

+0.58  
(0.28) 

0.61  
(0.31) 

Note: Standard deviations are presented in parentheses. For the resorted 510 
random-order condition, trials were resorted to match the order of trials used in 511 
the predetermined-order condition. *refers to significant differences between 512 
predetermined vs. resorted random order. +refers to significant differences 513 
between experiments. 514 
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EXPERIMENT 2 515 

Experiment 2 differs from Experiment 1 in one crucial way: rather than 516 
asking participants to focus on the global shape of displays, we asked them to 517 
decide whether two displays match in a local element. The same two between-518 
group factors were manipulated: element familiarity (familiar vs. unfamiliar 519 
element) and trial predictability (random vs. predetermined order of trials). We 520 
predicted a fractal-exponent effect of trial order, similar to the one found in 521 
Experiment 1. The degree to which element familiarity affects fractal exponents 522 
will speak to the degree to which sustained attention to an element is affected by 523 
the familiarity of that element.  524 

Method 525 
Participants 526 

Fifty-six adult participants between 18 and 56 years of age (38 women, 527 
18 men; M = 21.5 years, SD = 6.26 years) were randomly assigned to one of the 528 
four experimental conditions. The number of participants in each condition 529 
ranged between 13 and 15, and age distribution was comparable across 530 
conditions. Six additional participants were tested but not included in the final 531 
sample due to equipment problems (n = 2), or because they failed to meet the 532 
75% accuracy criterion (n = 4). 533 

Materials and Procedure 534 

Materials and procedure were identical to those from Experiment 1, the 535 
only difference pertaining to the different instruction: participants were asked to 536 
decide if displays matched in one of their elements. Thus the feedback training 537 
was modified such that the correct response pertained to detecting an element 538 
match, rejecting displays that matched in global shape, and rejecting displays 539 
that did not match at all.  540 

Results & Discussion 541 

We again focus the discussion on the spectral analysis, as a means of 542 
understanding the processes that give rise to sustained attention – in this case, 543 
attention to local elements. Performance in terms of reaction-time data and 544 
accuracy are provided in Fig. 5: Accuracy (Fig. 5A) was affected by (i) trial type 545 
[F (2, 104) = 173.35, p < 0.01; 2

p = 0.77, better performance on shape-match 546 
(M = 0.988) and no-match trials (M = 0.984) than element-match trials (M = 547 
0.859), ps < 0.01], and by (ii) a trial-type-order interaction [F (2, 104) = 4.97, p 548 
< 0.01; 2

p = 0.09, more pronounced effect of trial type in the random-order than 549 
the predetermined-order condition]. Reaction time (Fig. 5B) was affected by (i) 550 
trial type [F (2, 104) = 74.36, p < 0.01; 2

p = 0.59, shorter RT on shape-match 551 
(M = 2.42s) and no-match trials (M = 2,62s) than element-match trials (M = 552 
1.92s), ps < 0.01], by (ii) familiarity [F (1, 52) = 13.52, p < 0.01, 2

p = 0.21; 553 
shorter RT in the familiar-element (M = 2.05s) than the unfamiliar-element (M = 554 
2.59s) condition], and by (iii) a familiarity-order interaction [F (2, 52) = 2.88, p 555 
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series (stemming from the predetermined-order condition) and for the resorted 638 
data series (stemming from the random-order condition). It is possible that the 639 
added difficultly of focusing on individual elements exaggerates the effect of the 640 
trial order. How do these findings change when participants have to focus on 641 
both the elements of the displays and their global shape?  642 

EXPERIMENT 3 643 

So far, our method required participants to attend to one aspect of the 644 
hierarchical order: either the global shape (Exp. 1) or the local elements (Exp. 645 
2). In this final experiment, participants had to pay attention to both at the same 646 
time. The same factors of element familiarity and trial predictability were 647 
manipulated.  648 

Method 649 
Participants 650 

Participants were 69 adults between 18 and 55 years of age (46 women, 651 
23 men; M = 22.0 years, SD = 5.4 years), randomly assigned to one of the four 652 
experimental conditions. The number of participants in each condition ranged 653 
between 16 and 20, and age was about equally distributed across cells. Six 654 
additional participants were tested but not included in the final sample due to 655 
equipment failure (n = 4), or failure to meet the accuracy criterion (n = 2).  656 

Materials 657 

Stimuli were identical to those used in Experiment 1 and 2, with the 658 
exception that the key pad had three values marked for this experiment, rather 659 
than just two. In particular, the numbers 1, 2 and 3 were covered with the letters 660 
S, N and L (or C), to correspond to the answer categories ‘shape-match’, ‘no-661 
match’, and ‘letter-match’ (or character-match), respectively.  662 

Procedure 663 

Procedure was the same, with the exception of the task instruction (and 664 
thus the feedback training). Participants were instructed to decide if two displays 665 
match in a letter (or character), in overall shape, or not at all. Thus, during 666 
feedback training, the correct response pertained to detecting a present element 667 
match and to detecting a present shape match.  668 

Results & Discussion 669 

Figure 7 provides information about participants’ mean reaction time 670 
and accuracy, as a function of condition and trial type: Accuracy (Fig.7A) was 671 
affected by (i) trial type [F (2, 130) = 27.00, p < 0.001, 2

p = 0.29, better 672 
performance on shape-match (M = 0.954) and no-match trials (M = 0.957), than 673 
on element-match trials (M = 0.897), ps < 0.001], and by (ii) a trial-type-674 
familiarity interaction [F (2, 130) = 3.24, p < 0.04, 2

p = 0.05, familiarity 675 
affected accuracy in element-match trials, F (1, 65) = 5.99, p = 0.017, 2

p = 676 
0.08, but not in the other types of trials]. Reaction time (Fig. 7B) was affected 677 
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the predetermined-order condition (grey circles in Fig. 8B), the re-sorted 760 
random-order trials (white circles in Fig. 8B) and the dummy-coded trial series 761 
(dashed lines in Fig. 8B). The findings mimicked those of the previous 762 
experiments: Spikes were again visible in the predetermined-order data, as well 763 
as the re-sorted random-order data and the dummy-coded series. And they 764 
mapped onto the same three frequencies that correspond to the 15-trial, the 10-765 
trial, and the 5-trial pattern (-1.18 Log10Hz, -1.0 Log10Hz, and -0.70 Log10Hz, 766 
respectively).  767 

Table 3 shows the means of the maximum amplitude of each of the 768 
three main spikes, separated by type of trials series (predetermined order; 769 
resorted random order). In our first set of analyses, we compared spike height 770 
between the predetermined-order condition and the resorted random-order 771 
condition (grey vs. white circles in Fig. 8B). Findings are comparable to those of 772 
Experiment 1, in that there was a higher amplitude in the predetermined-order 773 
condition (M = 0.80) than in the resorted random-order condition (M = 0.62) at 774 
one of the frequencies (-1.18 Log10Hz), t(67) = 2.68, p < 0.01. It appears that an 775 
attentional focus on global shape (Exp. 1 and 3), but not a focus on individual 776 
elements (Exp. 2), yields a spike pattern that is affected by participants’ learning 777 
of the embedded structure of trials.  778 

In our second set of analyses, we compared spike heights between 779 
experiments. For both the Exp. 1-versus-3 comparison and the Exp. 2-versus-3 780 
comparison, we obtained significant differences (namely at -1.18 Log10Hz and 781 
at -0.7 Log10Hz), ts ≥ 2.11, ps < 0.04, with highest spike height in Experiment 3. 782 
In fact, it appears that spikes were relatively low in Experiment 1 (overall M = 783 
0.44), higher in Experiment 2 (overall M = 0.52), and even higher in Experiment 784 
3 (overall M = 0.60). The same increase can be observed for the resorted 785 
random-order condition (MExp. 1 = 0.38, MExp. 2 = 0.52, MExp. 3 = 0.55). While this 786 
relation is not visible for the spikes at each frequency (see Table 3), the findings 787 
are an initial indication that spikes are not merely an artifact of trial order.  788 

GENERAL DISCUSSION 789 

The goal of the current paper was to shed light on the process that 790 
allows the mind to focus on an isolated pattern of order within a hierarchy of 791 
orders. What makes it possible to selectively focus on an overall Gestalt, while, 792 
at the same time, attend to local elements in a distributed way? Our proposal 793 
was that the necessary attentional process is soft-assembled, emergent in the 794 
coupling of a multitude of processes in the task-actor system, captured by the 795 
fractal scaling exponent of reaction-time data.  796 

Results were in line with this proposal, documenting, for the first time, 797 
some degree of fractality in attention to hierarchically nested order: we found 798 
non-zero fractal exponents across all conditions, but not when trials were re-799 
shuffled randomly. The variation in fractal exponents we documented here (their 800 
value being in the neighborhood of 0.20) is in line with previous demonstrations 801 
of non-random noise in visual-search and simple-decision tasks (e.g., Aks & 802 
Sprott, 2003; Aks, Zelinsky, & Sprott, 2002, Clayton & Frey, 1997; Gilden, 803 
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2001; McIlhagga, 2008; Stephen & Mirman, 2010; Ward, 2002). While these 804 
values are generally lower than what is typically observed in self-guided motor 805 
tasks (e.g., Gilden, Thornton, & Mallon, 1995), they speak to the question of 806 
whether the perception of hierarchical order is sub-served by a self-organized 807 
soft-assembled task-actor system. 808 

As mentioned in the introduction, the significance of above-zero fractal 809 
exponents in reasoning tasks has been debated in the literature, the concern 810 
being that fractality can stem from a variety of systems, not necessarily a system 811 
that is based on a soft-assembled coupling of a multitude of processes (for a dis-812 
cussion, see Gilden, 2009). Here we found further evidence against this concern. 813 
First, consider our effect of trial predictability on the size of the fractal expo-814 
nent. Trial predictability was far from transparent in the current set of experi-815 
ments: there were three different patterns, each repeated six to eight times. Parti-816 
cipants most likely did not fully learn the embedded sequences, as evidenced in 817 
their accuracy. Yet, their performance reflected the soft-assembly of an antici-818 
patory system that transcended the time scale of an individual trial and includes 819 
the propensity to act on a future trial (cf., Brandone, Horwitz, Aslin, & 820 
Wellman, 2014; Munakata, Snyder, & Chatham, 2012; Stepp & Turvey, 2010).  821 

Consider next our results related to the instructed focus of attention: 822 
Highest fractal exponents were obtained when participants focused on one level 823 
of order (Exp. 1 and 2) than when they focused simultaneously the overall 824 
Gestalt and the local elements (Exp. 3). Divided attention is likely to disrupt a 825 
trial-transcending emergent system – lending support to the idea that the size of 826 
the fractal exponents signifies the ease of coupling that the task affords. Element 827 
familiarity, lastly, is too in line with the overall claim of above-zero fractal ex-828 
ponents: In the case in which element familiarity yielded an effect, fractal 829 
exponents were higher for the familiar-element than the unfamiliar-element 830 
condition.  831 

Considering all the factors together – trial predictability, element 832 
familiarity, and task instruction, we devised an ad-hoc strategy to dummy code 833 
each factor with 0 or 1 (or 2 in the case of task instruction), depending on 834 
whether the approach of emergent soft-assembly predicts a higher (vs. lower) 835 
task-actor coupling. We then added up these codes to obtain a value for each 836 
condition. Following this strategy, the predetermined-order condition with 837 
familiar elements in Experiment 1 yielded the lowest sum (0 + 0 + 0 = 0), while 838 
the random-order condition with unfamiliar elements in Experiment 3 yielded 839 
the highest sum (1 + 1 + 2 = 4). The Spearman correlation coefficient between 840 
mean fractal exponents and sum dummy score was highly significant, at -0.80, p 841 
< 0.001, implying a meaningful relation between fractal exponent and relative 842 
strength of task-actor coupling.  843 

Spike height found in cumulative plots of the current study provides 844 
corroborative information about the degree of task-actor coupling. Specifically, 845 
spikes were attenuated in the easiest task, namely when attention was focused 846 
only on overall shape (Exp. 1), compared to the more difficult task, when atten-847 
tion was focused on individual elements (Exp. 2). Spikes were even higher when 848 
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participants had to focus on both elements and overall shape (Exp. 3). As such, 849 
spike height is in line with the degree to which the underlying coupling trans-850 
cends the unique contribution of trial order. A similar argument can be made for 851 
the difference in spike height between the original data of the predetermined-852 
order condition and the resorted data of the random-order condition.  853 

Taken together, our findings suggest that attention to hierarchical pat-854 
terns has the signature of self-organization and soft-assembly of a multitude of 855 
processes. This implies that no single process is responsible for the ability to 856 
focus on an isolated level of order, just as there is no single process responsible 857 
for the ability to distribute attention across many elements. Instead it is the com-858 
ing together of all pertinent processes, ranging from those that take into account 859 
the most detailed of elements, to those that take into account the largest of 860 
Gestalts (cf., Stephen & Anastas, 2011). As such, the current results offer a 861 
sharp departure from theories of attention that attribute the fluctuation of atten-862 
tion in local and global aspects to independent processes or separate com-863 
ponents. 864 

The next step then is to define the control parameter that drives 865 
attention to a local versus a global level of order. Generally speaking, control 866 
parameters are ratios that lead the system through the variety of potential states, 867 
without any kind of code or algorithm for a specific pattern of performance (cf., 868 
Kelso, 1995). More specifically, control parameters are ratios of constraints, 869 
where constraints that support a particular pattern of behavior are pitted against 870 
constraints that support a different pattern of behavior (Kloos & Van Orden, 871 
2010). In the case of visual hierarchical stimuli, we can envision a control para-872 
meter that captures the relative salience of local versus global order. Consider, 873 
for example, the stimuli in Kimchi et al. (2005): Displays differed in the number 874 
of local elements within the overall Gestalt (which did not change in size). Thus 875 
displays differed in the size of the local elements, while the size of the global 876 
patterns stayed the same. Such change in relative size and sparcity is likely to 877 
affect changes in salience of local versus global patterns. Thus, these features 878 
are likely to change the control parameter for attention to global order. Indeed, 879 
as had been previously demonstrated by Martin (1979), Kimchi et al. (2005) cor-880 
roborated that the degree of global precedence increased as the size of local ele-881 
ments decreased. It remains to be seen how such a control parameter would be 882 
modified by factors of trial predictability and instructed focus of attention. 883 
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